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Abstract We consider the spectral problem for the random Schrödinger operator on the
multidimensional lattice torus increasing to the whole of lattice, with an i.i.d. potential (An-
derson Hamiltonian). We obtain the explicit almost sure asymptotic expansion formulas for
the extreme eigenvalues and eigenfunctions in the intermediate rank case, provided the up-
per distributional tails of potential decay at infinity slower than the double exponential func-
tion. For the fractional-exponential tails (including Weibull’s and Gaussian distributions),
extremal type limit theorems for eigenvalues are proved, and the strong influence of para-
meters of the model on a specification of normalizing constants is described. In the proof
we use the finite-rank perturbation arguments based on the cluster expansion for resolvents.

The results of our paper illustrate a close connection between extreme value theory for
spectrum and extremal properties of i.i.d. potential. On the other hand, localization proper-
ties of the corresponding eigenfunctions give an essential information on long-time inter-
mittency for the parabolic Anderson model.

Keywords Anderson Hamiltonian · Random potential · Extreme eigenvalues · Principal
eigenvalue · Extremal type limit theorem · Rare scatterers model

1 Introduction

The Anderson model is given by the Hamiltonian

H = κ� + ξ(· )

acting on l2(Zν) (“the space of wave functions”). Here � is the lattice Laplacian, i.e.,
�ψ(x) :=∑|y−x|=1 ψ(y) (x ∈ Z

ν ), κ > 0 is a diffusion constant, and the potential ξ(· ) =
ξ (ω)(· ) consists of independent identically distributed (i.i.d.) random variables ξ(x) (x ∈ Z

ν )
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with a common distribution function F(· ). In the multidimensional case (ν � 1), many au-
thors (e.g., [1, 2, 12, 17]) have shown that for any κ > 0, there exists a (nonrandom) constant
L = L(κ,F (· )) ∈ R such that the spectrum in (L,∞) is purely point, i.e.,

Spect(H) ∩ (L,∞) = Spectpp(H) ∩ (L,∞) �= ∅,

and the corresponding eigenfunctions decay exponentially with probability 1, provided F(· )
is Hölder continuous and ξ(0) has some finite statistical moments. (For small κ , the whole
spectrum Spect(H) is purely point.) This phenomenon is referred to as Anderson localiza-
tion for disordered systems; see [13, 15, 35, 39] for a detailed survey on the subject.

If V ⊂ Z
ν is the ν-dimensional torus of the volume |V |, the Anderson model in l2(V ) is

given by the Hamiltonian (finite matrix):

HV = κ�V + ξ(· )
with periodic boundary data. Clearly the spectrum of HV is a discrete and finite set, say,
Spect(HV ) = {λk,V : 1 � k � |V |}, where

λ1,V � λ2,V � · · · � λ|V |,V .

For κ = 0, this variational series becomes ξ1,V � ξ2,V � · · · � ξ|V |,V .
In our paper, letting V increases to Z

ν (i.e., |V | → ∞), we study the asymptotic structure
(in particular, extremal type limit theorems) of extremely high energy spectrum

Spect(HV ) ∩ (LV,ε,∞)

and localization properties of the corresponding eigenfunctions. Here constants LV,ε (high
levels) are chosen to be LV,ε := f ((1 − ε) log |V |), where f (· ) stands for the inverse func-
tion of − log(1 − F(· )) and 0 < ε < 1/2. Throughout the paper the distribution function
F(· ) is assumed to satisfy the following conditions:

lim
t→∞ (f (t) − f (δt)) = ∞ for any 0 < δ < 1 (1.1)

and

(F (t + s) − F(t − s)) | log s|μ = O(1)

as t → ∞ and s ↓ 0 simultaneously
(1.2)

for some μ > μ0(ε). A function F(· ) satisfying (1.2) is called log-Hölder continuous of or-
der μ at infinity. Clearly the class of distribution functions satisfying (1.1) and (1.2) includes
Weibull’s distributions

1 − F(t) = e−tα (t � 0) (1.3)

with arbitrary α > 0, and those with fractional-double exponential tails

1 − F(t) = const exp
{− etγ

}
(t � 0) (1.4)

for 0 < γ < 1.
Weibull’s distributions play an important role in the physical theory of “Lifshitz tails”

because of the existence of bifurcations with respect to α; see Chap. 2 in [34]. The task
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here is to find the exact asymptotic expansion formulas for the upper tails of the (limiting)
spectral distribution function, the structure of which is expected to depend strongly on the
parameter α; see Sect. 2.4 of our paper.

We stress the fact that the analysis of the boundary part spectrum is essential to under-
stand the long-time intermittent behavior for the parabolic problems associated with the
Anderson Hamiltonian via spectral representation of solutions. In [11, 20, 22–24, 30], the
authors have studied various aspects of asymptotic intermittency for the parabolic Anderson
model, in particular, the almost sure asymptotic behavior of solutions and, as a by-product,
the almost sure asymptotic formulas for the principal (i.e., largest) eigenvalue λ1,V of the
Hamiltonian HV . They have pointed out the crucial role of the fractional-double exponen-
tial distribution tails (1.4) because of the strong influence of both the distributional parameter
γ and the diffusion constant κ on the asymptotic behavior of the model; see also Sect. 2 of
our paper.

The main idea of the present study of spectrum comes from the mathematical theory
of “rare scatterers” and is based on the cluster expansion method for resolvents. The latter
leads to the explicit expansion formulas for extreme eigenvalues and eigenfunctions of the
Hamiltonian HV . This method was particularly used by Golitsyna and Molchanov [26] to
analyze the spectral problems for Hamiltonians on the whole of Z

ν with an infinite sequence
of (widely spaced) random potential peaks. The main feature of the subject is that the inter-
action between potential peaks can be neglected and the eigenpairs associated with a block
of peaks can be determined by the eigenpairs associated with the separate peaks. We notice
that the rare scatterers model is “typical” for the Anderson Hamiltonian HV on finite regions
V under certain conditions on F(· ). Let G(z)

V (λ; · , · ) be Green’s function of the Hamiltonian
κ�V + (1 − δz)ξ(· ) on V , where {z} ⊂ V are locations of exceedances ξ(z) � LV,ε . We
show that with probability 1 the extreme eigenvalue λ = λ(z) of HV , associated with z,
is a solution to the dispersion equation G(z)

V (λ; z, z) = 1/ξ(z) and the corresponding eigen-
function is G(z)

V (λ; · , z). By finite-rank perturbation arguments this dispersion equation is
approximated by the dispersion equation for the principal eigenvalue of the “single peak”
Hamiltonian κ�V + ξ̃ (· ) + ξ(z)δz, where ξ̃ (· ) is a “noise” potential. The asymptotic analy-
sis of extreme eigenvalues of HV is therefore reduced to the investigation of the principal
eigenvalues of the “single peak” Hamiltonians, which in turn are expanded in a certain series
over ξ̃ (x)/ξ(z) (x ∈ V ).

The origins of our paper are the announcements in [5, 9]. In the case of Weibull’s distribu-
tion with α < 2, extremal type limit theorems for eigenvalues of the Anderson Hamiltonian
HV (as V ↑ Z

ν ) were earlier proved by Grenkova et al. [29] by combining Gerzhgorin’s
theorem and the minimum-maximum principle for eigenvalues. Grenkova et al. [28] studied
limit distributions of extreme eigenvalues of the one-dimensional random operators by de-
veloping the phase formalism (which, however, is specific to dimension one only). Gärtner
and Molchanov [24] applied the variational principle to study the first two asymptotic terms
of the principal eigenvalue of the Anderson Hamiltonian HV (as V ↑ Z

ν ) under the general
conditions on F(· ) extending (1.1); see also [11, 30]. For the case of spatially continuous
Schrödinger operator with Poisson obstacle potential, we refer to [37, 44].

Recently, there is much progress toward the mathematical treatment of the boundary part
spectrum of random matrices, as the matrix volume increases. Limit theorems for the first
few extreme eigenvalues were proved, e.g., in [16, 42, 45, 46] for Wigner random matrices,
and in [10, 31, 43] for sample covariance random matrices; see also [36] for the general
theory of random matrices.

The results of our paper illustrate a close connection between the extremal properties of
random potential and the asymptotic structure of the boundary part spectrum. We refer the
reader to Sect. 2.2 for a detailed discussion on this relationship.



870 A. Astrauskas

We can think of the asymptotic results for spectrum of the Anderson Hamiltonian HV

as a natural extension of extremal type limit theorems for i.i.d. random fields ξ(· ) in V ↑
Z

ν (the latter corresponds to the case of κ = 0 in our model). Extreme value theory for
i.i.d. random sequences and fields is a well-developed branch of the probability theory; see,
e.g., [19, 33, 40]. We also point out that the results presented here for the i.i.d. potential
could be extended by using our methods to other classes of homogeneous ergodic potentials
including Gaussian fields with correlated values [4], moving average fields, Markov chains,
etc. Further extensions of our results include the case of Schrödinger operators on graphs
G when each x ∈ G has a fixed number of neighbors (for example, Bethe lattice) as well
as the case when the Laplacian � is replaced by a translation invariant finite range matrix
operator T ψ(x) =∑y∈Zν T (y)ψ(x − y), where T (· ) is a real (nonrandom) function with a
finite support.

The organization of the paper is as follows:
Section 2 is, in fact, a continuation of Introduction. We first discuss the main results of

the present paper on the asymptotic structure (as |V | → ∞) of the spectrum Spect(HV ) ∩
(LV,ε,∞) (see Sect. 2.1). We then treat their connections with extremal properties of the
potential ξ(· ) in V (Sect. 2.2) as well as connections with the almost sure long-time behavior
of the solutions to the parabolic problem associated with H (Sect. 2.3). At the end, some
remarks about the asymptotics for the upper tails of the spectral distribution function are
carried out (Sect. 2.4).

In Sect. 3, we investigate the almost sure extremal properties of the i.i.d. potential ξ(· )
in torus V increasing to Z

ν . In particular, we study the asymptotic behavior of exceedances
of high levels LV,ε .

In Sect. 4, we treat the almost sure asymptotic structure of the extreme eigenvalues λk,V

in the intermediate rank case 1 � k = O(|V |ε), provided F(· ) satisfies conditions (1.1) and
(1.2). At the end, we briefly discuss some extensions of the previous results to the case when
F(· ) has the double exponential distribution tails and the diffusion constant κ is small.

Section 5 provides extremal type limit theorems for a finite number of the first extreme
eigenvalues λk,V , i.e., fixed rank case. In Sect. 5.1, we consider the class of distribution func-
tions F(· ) satisfying (1.1) and (1.2). In Sect. 5.2, we briefly discuss the class of distribution
functions F(· ) satisfying − log(1−F(t)) = o(t3) as t → ∞, i.e., a potential with extremely
sharp peaks. In this case, condition (1.2) on log-Hölder continuity is removed.

In Sect. 6, the results of Sects. 4 and 5 are extended to a special class of distributions
with fractional-exponential tails (containing Weibull’s distributions (1.3) for arbitrary α > 0
as well as Gaussian distributions). Bifurcations with respect to distributional parameters are
studied.

Appendices A and B form the “deterministic” part of the paper. In Appendix B, we study
the spectral problem for rare scatterers model in V ⊂ Z

ν (or on the whole of Z
ν ). In order

to derive the explicit estimates for eigenpairs we use finite-rank perturbation arguments
based on the expansion of resolvents over paths (cluster expansion, expansion over κ�)
given in Appendix A. Appendices A and B present self-contained topics of general theory
of Schrödinger operator, and may therefore be considered of independent interest.

Our forthcoming papers [7, 8] are devoted to a generalization and extension of the results
of the present article. In [7], we study joint limit distributions of a finite number of the
first extreme eigenvalues λk,V of the Hamiltonian HV (as V ↑ Z

ν ), provided − log(1 −
F(t)) = o(t3) as t → ∞ (i.e., heavy distributional tails). In this case, potential ξ(· ) in V

possesses extremely pronounced peaks and, therefore, the eigenvalue λk,V is asymptotically
close to the kth extreme value ξk,V of ξ(· ) in V ; here k is fixed (see Sect. 5.2 for discussion).
In [8], we study localization properties of the eigenfunctions corresponding to the first K
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extreme eigenvalues of HV , provided F(· ) satisfies the conditions of the present paper or
the conditions of [7]. Bifurcations with respect to distributional parameters are studied.

Notation. Representation of i.i.d. potential ξ(· )

By Z
ν we denote the ν-dimensional integer lattice, and by R+ the positive half-axis, and

N := {1,2, . . .}. Given n ∈ N, we introduce the periodic norm |· | on Z
ν by

|x| := min
y∈2nZν

(|x1 − y1| + · · · + |xν − yν |)

for x = (x1, . . . , xν) ∈ Z
ν , and let V be the ν-dimensional torus obtained by identifying

opposite faces of the cube in Z
ν , centred at the origin of Z

ν with sides of the length 2n + 1
parallel to the lattice axes.

By GV (λ;x, y) (x ∈ V , y ∈ V ) we denote Green’s function of the Hamiltonian HV in
l2(V ), viz. GV (λ;x, y) := GV (λ)δy(x) := (λ − HV )−1δy(x). Here δy(· ) stands for the Kro-
necker symbol, i.e., δy(x) := 1 if x = y, and δy(x) := 0 if x �= y. Let {ψ(x;λ) : x ∈ V }
be an eigenfunction associated with λ ∈ Spect(HV ) and normalized by the condition∑

x∈V ψ(x;λ)2 = 1.
Let logj denote the j times iterated logarithm. For real a and b, we write a ∨ b :=

max(a, b) and a ∧ b := min(a, b). Given a subset U ⊂ Z
ν , we write |U | for the number

of its elements. Let 1{E} or 1E stand for the indicator function of a subset E ⊂ R, E ⊂ N,
etc. The summation over x ∈ V : a � |x| � b is abbreviated to

∑
x : a�|x|�b or simply to∑

a�|x|�b . For positive numbers aN and bN (N ∈ N) we write aN � bN as N → ∞ if and
only if 0 < lim infN aN/bN � lim supN aN/bN < ∞. By t0, |V0|, etc. we denote various large
numbers, values of which may change from one appearance to the next. Similarly, const,
const′, etc. stand for various positive constants.

Throughout the paper we suppose that all random variables are defined on a common
probability space (,F,P). Let E stand for the expectation with respect to P. Given
a sequence of random variables XN = X

(ω)
N (N ∈ N; ω ∈ ) and positive numbers aN

(N ∈ N), we write XN = o(aN) as N → ∞ (resp., XN = O(aN) as N → ∞) in probability
if limN P(|XN | > aNε) = 0 for each ε > 0 (resp., limε↓0 lim supN P (|XN | > aN/ε) = 0).

The following representation of an i.i.d. field will play the key role in a number of our
statements. Given a right-continuous distribution function F(t) (t ∈ R), let us introduce the
function

f (s) := inf
{
t : 1 − F(t) � e−s

}
(0 < s < ∞). (1.5)

Note that f (· ) is left-continuous and

1 − F(f (s)) � e−s � 1 − F(f (s)−) for each 0 < s < ∞; (1.6)

see pp. 5–7 in [41]. Let η(x) (x ∈ Z
ν ) be independent exponentially distributed random

variables with mean 1. Clearly the random variables

ξ(x) := f (η(x)) (x ∈ Z
ν) (1.7)

are independent and have a (common) distribution function F(· ); see p. 3 in [41]. Given a
sample η(· ) in V , we associate the sites zk,V ∈ V (1 � k � |V |) with the variational series

η(z1,V ) > η(z2,V ) > · · · > η(z|V |,V ); (1.8)
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the inequalities are strict with probability 1 due to the continuity of exponential distribution.
According to (1.7) and (1.8) the variables

ξ1,V := ξ(z1,V ) � ξ2,V := ξ(z2,V ) � · · · � ξ|V |,V := ξ(z|V |,V ) (1.9)

form the variational series based on the sample ξ(· ) in V . For any 0 < ε < 1, the first |V |ε
larger values ξk,V (resp., zk,V ) are referred to as ξV -peaks (resp., locations of ξV -peaks).

2 General Remarks on Extremal Theory for Spectrum and Related Topics

2.1 Asymptotic Results for the Upper Part of Spectrum

The main results of the present paper can be briefly rephrased as follows:
1) Localization properties. Fix 0 < ε < 1/2, and assume that the distribution func-

tion F(· ) of the i.i.d. potential satisfies conditions (1.1) and (1.2) with μ = μ(ε) > 0
large enough. Write LV,ε := f ((1 − ε) log |V |), and let zk,V ∈ V (1 � k � |V |) be loca-
tions of extreme values of ξ(· ) in V . Then the eigenfunctions ψ(· ;λk) corresponding to
λk ∈ Spect(HV ) ∩ (LV,ε,∞) are exponentially well localized, i.e., with probability 1

|ψ(x;λk)| � exp{−A(LV,ε)|x − zτ(k),V |} (x ∈ V )

for some (random) τ(k) = τV (k) ∈ {1,2, . . . , |V |} and for some constants A(LV,ε) → ∞ as
|V | → ∞ (Theorem 4.1).

In fact, the sites {zτ(k),V : λk � LV,ε} ⊂ V form (as |V | → ∞) extremely rare set of
locations of ξV -peaks. In particular case where F(· ) is Weibull’s distribution (1.3) and
K ∈ N is fixed, we show that for α < 3, τV (K) → K ; whereas in the case of α > 3,
τV (K) → ∞ and log τV (K) = o(log |V |) (as |V | → ∞) in probability (Theorems 4.1
and 6.3, and Remark 6.5 below; see also [8]).

2) Extremal type limit theorems. Assume that F(· ) is Weibull’s distribution and K ∈ N

is fixed. Then there exist constants BV = BV (α, κ, ν) ∈ R such that the normalized spectral
interval lengths

λ1,V − λ2,V

α−1(log |V |)1/α−1
, . . . ,

λK−1,V − λK,V

α−1(log |V |)1/α−1
,

λK,V − BV

α−1(log |V |)1/α−1

are asymptotically (as |V | → ∞) mutually independent and have limiting joint distributions
with the density

exp
{−t1 − · · · − (K − 1)tK−1 − KtK − e−tK

}

for all tk � 0 (1 � k � K −1) and all tK ∈ R. This convergence result for ξk,V replacing λk,V

(1 � k � |V |) obviously holds with bV := f (log |V |) = (log |V |)1/α replacing BV . In the
case of α < 2, one has that BV = bV ; whereas for α � 2, the constants BV and bV are dif-
ferent. For instance, BV = bV + C0b

−1
V if 2 � α < 3, BV = bV + C0b

−1
V + C1b

−(α+1)/(α−1)

V +
(C2 logbV + C3)b

1−α
V if 3 � α < (3 + √

17)/2 and so on (Theorems 6.2 and 6.3, and Corol-
lary 6.4). Asymptotic equations for the normalizing constants BV are derived as well (The-
orem 6.3). By this limit theorem with α > 1, the eigenvalue λK,V is expanded in the series
(deterministic flow) BV = bV + C0b

−1
V + C1b

−(α+1)/(α−1)

V + · · · plus small random fluctua-
tions of the order O(b1−α

V ) as |V | → ∞.
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Gärtner and Molchanov [24] have obtained (by using the variational principle) the
second-order expansion formula for the principal eigenvalue λ1,V (as V ↑ Z

ν ) under the
following condition on F(· ):

lim
t→∞ (f (t) − f (δt)) = −ρ log δ for each 0 < δ < 1, (2.1)

for some 0 � ρ � ∞. The latter naturally extends condition (1.1) (i.e., the case ρ = ∞). If
0 < ρ < ∞, the class of distribution functions (2.1) includes the double exponential case

1 − F(t) = exp{− et/ρ} (t ∈ R). (2.2)

If ρ = 0, the typical examples of (2.1) are F(·) satisfying (1.4) with γ > 1 and F(· ) satis-
fying F(t0) = 1 for some t0 ∈ R (i.e., bounded from above potentials).

Proposition 2.1 (Sect. 2.4 in [24]) Assume that F(· ) is a continuous function satisfying
condition (2.1) for some 0 � ρ � ∞, and the additional condition f (t +C log t)−f (t) → 0
as t → ∞, for some C > 1. Then with probability 1

λ1,V = f (log |V |) + 2νκq(ρ/κ) + o(1) as |V | → ∞. (2.3)

Here the nonrandom function q(· ) may be expressed in terms of a variational problem,
having the following properties: q(· ) is nonincreasing and convex, 0 < q(· ) < 1 in (0,∞);
q(0) = 1 and q(∞) = 0.

Moreover, according to Corollary 4.5 of our paper, we have that

q(ρ) = (2ρ logρ)−1 (1 + o(1)) as ρ → ∞.

We point out that the first term in (2.3) is equal (with o(1) accuracy) to ξ1,V = the max-
imum of ξ(· ) in V (see Remark 3.3 below). The second term in (2.3) contains information
about localization properties of the eigenfunction ψ(· ;λ1,V ). Using the maximum-minimum
principle for eigenvalues, we obtain that, for any realization ξ(· ),

ξ1,V � λ1,V � ξ1,V + 2νκ (2.4)

for all V . In view of (2.4), limit (2.3) tells us that the principal eigenvalue λ1,V achieves as
|V | → ∞ its lower (resp., upper) bound, provided F(· ) satisfies (2.1) with ρ = ∞ (resp.,
ρ = 0). We emphasize the case of (2.1) when the ratio ρ/κ is large enough (Theorem 4.4).
The latter indicates the intermediate situation between asymptotically complete localization
(if ρ = ∞) and noncomplete localization (if 0 � ρ < ∞) for the eigenfunction ψ(· ;λ1,V ).

Of course, limit (2.3) for ρ = 0 is trivial; see the simple arguments of the proof of (2.3),
ρ = 0, at the end of Sect. 2.2. In the case of ρ = 0, Biscup and König [11], Hofstad et al. [30]
have recently obtained more accurate almost sure asymptotic formulas for the eigenvalue
λ1,V under mild regularity conditions on the upper distributional tails of ξ(0) in terms of
the cumulant generating function log E etξ(0) as t → ∞. These asymptotic formulas for λ1,V

consist of deterministic terms reflecting, in particular, localization properties of the eigen-
function ψ(· ;λ1,V ). The main accent of the proofs here is that λ1,V is dominated by the
principal eigenvalue of the Hamiltonian HU on the random region U = UV ⊂ V with the
following a.s. asymptotic properties. First, U unboundedly increases, but the size of U is
much smaller than that of V , i.e., |U | = o(|V |) as V ↑ Z

ν and, second, the potential on
U attains extremely large values and is of particular preferred shape. This shape (called
“optimal”) is specified by a deterministic variational formula.
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2.2 Relation to Extremal Properties of i.i.d. Potential

We now discuss the relationship between the asymptotic results on the upper part of spec-
trum, Spect(HV ) ∩ (LV,ε,∞), and the extremal properties of the i.i.d. potential ξ(· ) in
V ↑ Z

ν .
Assume that F(· ) satisfies condition (1.1) (i.e., the upper distributional tails are thicker

than the double exponential) and the additional condition (1.2) of log-Hölder continuity,
provided μ > μ0(θ) and 0 < θ < 1/2. Then extreme values of a “typical” sample ξ(· ) in V

possess a strongly pronounced geometric structure which can be described as follows:
For 0 < ε < θ , let the subset �V,ε ⊂ V (resp., �V,θ ⊂ V ) consists of sites at which

ξV -exceedances of the level LV,ε (resp., LV,θ ) occur. Let ξ̃ (x) := ξ(x) if x ∈ V \�V,θ and be
zero otherwise (a “noise” random potential). Then one can find constants c1 > c2 > 0 and
C > 2νκ such that with probability 1

1

2
|V |ε � |�V,ε| � |�V,θ | � 2|V |θ , (2.5)

min
{|x − y| : x ∈ �V,θ , y ∈ �V,θ , x �= y

}
� |V |c1 , (2.6)

min
{|ξ(x) − ξ(y)| : x ∈ �V,θ , y ∈ �V,θ , x �= y

}
� exp {−|V |c2} (2.7)

and
min
{
ξ(x) − ξ̃ (y) : x ∈ �V,ε, y ∈ V

}
> C (2.8)

for each sufficiently large V (Lemmas 3.1 and 3.5).
From the physical point of view, properties (2.5)–(2.8) mean that there is no resonance

between ξV -peaks in the Anderson model for large V . Thus, finite-rank perturbation ar-
guments of Appendices A and B show that an eigenvalue λ(z0) of HV associated with a
site z0 ∈ �V,ε is approximately close to the principal eigenvalue λ̃(z0) of the “single-peak”
Hamiltonian κ�V + ξ̃ (· ) + ξ(z0)δz0 in l2(V ), viz.

|λ(z0) − λ̃(z0)| � exp {−|V |c1} (2.9)

for each sufficiently large V (Theorem B.3 in Appendix B). On the other hand, the eigen-
value λ = λ̃(z0) is the maximal solution to the equation

G̃V (λ; z0, z0) = 1

ξ(z0)
, (2.10)

where G̃V (λ;x, y) (x ∈ V , y ∈ V ) is Green’s function of the Hamiltonian κ�V + ξ̃ (· ) in
l2(V ) (Remark B.5). Moreover, G̃V (λ; z0, z0) is expanded over κ�

G̃V (λ; z0, z0) =
∑

�

κ |�|∏

v∈V

(
λ − ξ̃ (v)

)−nv(�)
(2.11)

(Lemma A.2 in Appendix A), where the sum
∑

� is taken over all paths � : v0 := z0 → v1 →
·· · → vm := z0 in V such that |vi − vi−1| = 1 for each 1 � i � m and each m ∈ N, nv(�)

denotes the number of times the path � visits the site v ∈ V , |�| :=∑v∈V nv(�)−1 � 0. By
(2.10) and (2.11) we expand λ̃(z0) over ξ̃ (x)/ξ(z0) (x ∈ V ) to represent λ̃(z0) in the form

λ̃(z0) = ξ(z0) + 2νκ2

ξ(z0)
+ κ2

3∑

l=1

∑

|x−z0|=1

ξ̃ (x)l

ξ(z0)l+1
+ O

(
∑

|x−z0|=1

ξ̃ (x)4

ξ(z0)5

)
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+ O

(
∑

|x−z0|=1
|y−z0|=1
|z−z0|≤2

1

(ξ(z0) − ξ̃ (x))(ξ(z0) − ξ̃ (y))(ξ(z0) − ξ̃ (z))

)

(2.12)

as |V | → ∞; z0 ∈ �V,ε . We finally note that

min
{|̃λ(x) − λ̃(y)| : x ∈ �V,ε, y ∈ �V,ε, x �= y

}
� exp {−|V |c2} (2.13)

(cf. (2.7)). From (2.9), (2.12) and (2.13) we obtain that, with probability 1, any kth extreme
eigenvalue λk,V of HV is approximately close to the kth extreme value of the random series
(2.12) for each 1 � k � 1

2 |V |ε , for each large V .
For fixed K ∈ N, the asymptotic behavior of the first K extreme values among λ̃(x)

(x ∈ �V,ε) depends strongly on the decay rate of the gaps (spacings) ξK,V − ξK+1,V as
|V | → ∞, or equivalently, on the decay rate of the upper distributional tails at infinity. The
following two examples illustrate this phenomenon:

1) Assume that F(· ) is Weibull’s distribution and α < 3, so that ξ(· ) satisfies (2.5)–(2.8)
and, in addition,

ξ 2
K+1,V (ξK,V − ξK+1,V ) → ∞

in probability. Then the third and all other terms in expansion (2.12) with z0 = zK,V are
asymptotically smaller than ξK,V −ξK+1,V . This in turn implies that, as |V | → ∞, the eigen-
function ψ(· ;λK,V ) is completely localized on zK,V , so that λK,V corresponds to zK,V , viz.
λK,V ↔ zK,V (Theorems 6.2 and 6.3 when α < 3).

2) In the case of Weibull’s distribution with α > 3, properties (2.5)–(2.8) again hold true
and, in addition,

ξ 2
K+1,V (ξK,V − ξK+1,V ) → 0

in probability. Then the third term in (2.12) becomes asymptotically essential. Therefore,
the correspondence λK,V ↔ zK,V fails and the eigenfunction ψ(· ;λK,V ) is completely lo-
calized on zτ(K),V with τ(K) different from K in limit as |V | → ∞ (Theorems 6.2 and 6.3
when α > 3, and Remark 6.5; see also [8] for a more detailed discussion on localization
properties).

Assume now that F(· ) satisfies (2.1) with 0 � ρ < ∞, i.e., the upper distributional tails
are like double exponential or thinner than those. Then qualitative new type bifurcations
with respect to both the distributional parameter and the diffusion constant are observed. To
illustrate this phenomenon, let us consider the following two cases:

1) Let (2.1) be fulfilled with ρ > 0, but the ratio ρ/κ being large. (The latter means,
in particular, that either the degree of disorder of the potential is high, or the diffusion is
weak.) Assume, in addition, that F(· ) is log-Hölder continuous at infinity with μ > μ0(θ).
Then properties (2.5)–(2.8) of ξ(· ) are still valid, and hence the asymptotic structure of
Spect(HV ) ∩ (LV,ε,∞) is quite similar to the case of ρ = ∞. In particular, the principal
eigenvalue λ1,V corresponds to the isolated site zτ(1),V ∈ V such that

log τ(1)

log |V | → ε∗(ρ/κ) ∈ (0,1/2) as |V | → ∞

(Theorem 4.4 and Corollary 4.5).
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2) Assume now that (2.1) is fulfilled with ρ = 0. Then ξV -peaks are asymptotically too
close to each other in height, viz.

ξ[|V |δ ],V − ξ[|V |ε ],V → 0 as |V | → ∞
with probability 1, for all constants 0 � δ < ε < 1 (Lemma 3.1(i)); i.e., property (2.8) does
not hold. In this case, therefore, the principal eigenvalue does not longer correspond to an
isolated potential peak, but to an extremely large “island” of peaks of comparable ampli-
tude [11, 30]. In order to stress this correspondence, let us check that with probability one
λ1,V − f (log |V |) → 2νκ (as |V | → ∞) by applying the following transparent arguments.

Given i ∈ N, d = d(i) ∈ N and sufficiently large V , let V (i) denote the collection of
“boxes” U(x) := {y : |y − x| � d} ⊂ V of the volume |U(x)| = i and diamU(x) = d ,
x ∈ V . By Lemma 3.4 below, with probability 1 there is a “box” U(i) ∈ V (i) such that
minx∈U(i) ξ(x) � LV,ε for some ε ∈ ( i−1

i
; i

i+1 ) and each V ⊃ V0(w; i). Abbreviate ξ (i)(x) :=
ξ(x) if x ∈ U(i), and ξ (i)(x) := −∞ otherwise. From (2.1) with ρ = 0 we note that almost
sure ξ (i)(z) = f (log |V |) + o(1) as |V | → ∞, for all z ∈ U(i). Therefore, by the minimum-
maximum principle, we have with probability one that λ1,V � λ(i) + f (log |V |) + o(1) as
|V | → ∞, where λ(i) is the principal eigenvalue of κ� in l2(U(i)) which tends to 2νκ

as U(i) unboundedly increases. In view of the upper bound in (2.4), the above arguments
show that the main contribution to the eigenvalue λ1,V comes from an “island” of ξV -
peaks ξ(z) = f (log |V |) + o(1), z ∈ U(i), with |U(i)| = i → ∞. This yields the desired
limit for λ1,V .

As mentioned by Gärtner and Molchanov [24] in the case of (2.1) for some 0 < ρ <

∞, the eigenvalue λ1,V corresponds to an “island” of ξV -peaks with asymptotically finite
support U(i) ⊂ V , |U(i)| = i, for some i ∈ N. Notice that, given i, the subsets U(i) are
located asymptotically far away from each other; cf. Lemma 3.4 of our paper.

2.3 Relation to the Parabolic Problems

The asymptotic results for the spectrum, Spect(HV ), give the essential information on the
long-time intermittent behavior of the solution to the parabolic equation

∂u(s, x)

∂s
= κ
∑

|y|=1

(u(s, x + y) − u(s, x)) + ξ(x)u(s, x), s ∈ R+, x ∈ Z
ν, (2.14)

with the homogeneous initial datum u(0, · ) ≡ 1. Equation (2.14) is to describe an evolu-
tion of a particle system of the branching type with random birth and death rates (random
medium). Thus, given a realization ξ(· ), the nonnegative solution u(s, x) is the expected
number of particles at time s at site x, where expectation is taken over branching mecha-
nism and diffusion, but not over ξ(· ) [14, 21]. Under mild conditions on the i.i.d. field ξ(· )
(the existence of statistical moments of ξ(0)), (2.14) has, with probability 1, an unique non-
negative solution which admits the Feynman–Kac representation; see Sect. 2 in [23]. Note
that, for each s � 0, the solution u(s, · ) is a homogeneous ergodic random field.

The notion of intermittency refers to an appearance (as s → ∞) of the lattice regions
(i.e., “islands”) which are far away from each other and provide the essential contribution to
the solutions of (2.14). This phenomenon has been explained at the physical level of rigor
by Zel’dovich et al. [48]. Gärtner and Molchanov [23, 24] have presented a rigorous defin-
ition of intermittency and derivation of the second-order expansion formulas for statistical
moments and almost sure behavior of u(s, x) as s → ∞, for fixed x ∈ Z

ν . For the upper dis-
tributional tails of ξ(0) thinner than the double exponential, Biscup and König [11], Hofstad
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et al. [30] have obtained more accurate expansion formulas for u(s, x). A spatial correlation
structure of u(s, · ) (s → ∞) have been investigated by Gärtner and Hollander [20], and the
geometric picture of intermittency by Gärtner et al. [22]. In [20, 22, 24] the emphasize has
been made on the double exponential distribution tails (2.2). The latter indicates the critical
situation between formation of (widely spaced) single peaks of u(s, · ) in the case of (2.1)
with ρ = ∞ and formation of (widely spaced) extremely large flat “islands” of peaks in
behavior of u(s, · ) in the case of (2.1) with ρ = 0 [11, 30].

Let us sketch the derivation of asymptotic formulas for the almost sure behavior (as
s → ∞) of the solution u(s,0) by using spectral representation for u(· , · ). We follow the
arguments of Sect. 2 in [24]. Assume that F(· ) satisfies condition (2.1). We claim the con-
dition f (t +C log t)−f (t) → 0 as t → ∞, for some C > 1. The latter excludes the class of
random potentials the maxima of which have “sharp” random fluctuations (cf. Remark 3.3).
Assume, in addition, that F(· ) is continuous, F(t) < 1 for all t ∈ R and, in dimension ν = 1,∫ −1

−∞ log |t |dF(t) < ∞. Write V (s) := Z
ν ∩[−s(log s)1+ε, s(log s)1+ε]ν for small ε > 0, and

let uV (s)(· , · ) be a solution to the corresponding equation in V (s) with periodic boundary
condition. We then obtain with probability 1 that

u(s,0) = uV (s)(s,0) + o(1) as s → ∞,

by the standard cut-off procedure for u(s,0) exploiting the fact that the main asymptotic
contribution to the Feynman–Kac representation of u(s,0) is given by particle trajectories
which stay in box V (s) during the whole time interval [0, s]. On the other hand, the solution
uV (s)(· , · ) admits the spectral representation

uV (s)(s, x) =
|V (s)|∑

k=1

exp{λk,V (s)s − 2νκs}(ψ(· ;λk,V (s)),1
)
V (s)

ψ(x;λk,V (s));

here, remember, λk,V (s) and ψ(· ;λk,V (s)) stand for the kth eigenvalue and the corresponding
eigenfunction of the Hamiltonian HV (s) (the eigenfunctions are chosen to form an ortho-
normal basis of l2(V (s))); (· , · )V stands for the inner product in l2(V ) and 1 denotes the
function taking everywhere value 1. This implies that with probability 1

uV (s)(s,0) = exp
{
λ1,V (s)s − 2νκs + o(s)

}
.

The latter and Proposition 2.1 imply the following statement.

Proposition 2.2 (Sect. 2.1 in [24]) Under the above conditions on F(· ) we have with proba-
bility 1 that

logu(s,0)

s
= f (ν log s) − 2νκ(1 − q(ρ/κ)) + o(1) as s → ∞; (2.15)

here q(· ) is specified in Proposition 2.1.

Recall that the first term on the right-hand side of (2.15) is equal (with accuracy o(1))
to the maximum of the potential in V (s) and the second term describes the shape of the
potential in the neighborhood of its maximum.
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2.4 Asymptotics for the Spectral Distribution Function

Let us define the limiting spectral distribution function of random Schrödinger operator H =
κ� + ξ(· ) on l2(Zν), provided ξ(· ) is a homogeneous ergodic field. Given torus V ⊂ Z

ν ,
by NV (t) we denote the empirical spectral distribution function, viz.

NV (t) := 1

|V |
∑

k

1{λk,V � t} (t ∈ R),

where, as before, λk,V ∈ Spect(HV ) (1 � k � |V |). The properties of homogeneity and er-
godicity of ξ(· ) are sufficient for NV (t) to converge with probability 1, as |V | → ∞, to the
nonrandom limit N(t) at all points t ∈ R; here N(· ) is a continuous distribution function
such that N(−∞) = 0 and N(∞) = 1, i.e., the so-called integrated density of states. See,
e.g., Chap. 2 in [39].

We point out the fact that the support of the spectral distribution function N(· ) coincides,
with probability 1, with the spectrum of the Hamiltonian H. (Note that in the case of i.i.d. po-
tential, Spect(H) in turn coincides with the algebraic sum of the close interval [−2νκ,2νκ]
and the support of distribution function F(· ) of ξ(0); see, e.g., Chap. 2 in [39].) The further
task is to investigate the asymptotic behavior of the tails 1 −N(t) at the upper edge of spec-
trum, i.e., the so-called Lifshitz tails. We first mention the following fundamental estimates
for N(t):

F(t − 2νκ) � N(t) � F(t + 2νκ) (t ∈ R). (2.16)

The proof of this is trivial. Indeed, since the norm of the Laplacian κ� in l2(V ) does not
exceed 2νκ , each eigenvalue λk,V is bounded from above (resp., from below) by the kth
eigenvalue of the diagonal operator ξ(· )+2νκ in l2(V ) (resp., ξ(· )−2νκ), i.e. ξk,V −2νκ �
λk,V � ξk,V + 2νκ for all 1 � k � |V | and all V . Therefore

FV (t − 2νκ) � NV (t) � FV (t + 2νκ) (t ∈ R),

where FV (· ) denotes the empirical distribution function of the potential values ξ(x) (x ∈ V ).
Passing to the limit as |V | → ∞, from the individual ergodic theorem we obtain the claimed
assertion (2.16).

The bounds (2.16) for N(· ) immediately imply the following asymptotic formulas for
the tails 1 − N(t).

Proposition 2.3 Write F ∗(t) := − log(1 − F(t)), and assume that F ∗(t) < ∞ for each
t ∈ R (i.e., unbounded from above potentials). If

lim
t→∞

F ∗(t + C)

F ∗(t)
= 1 for all C > 0, (2.17)

then

lim
t→∞

log(1 − N(t))

log(1 − F(t))
= 1.

If

lim
t→∞
(
F ∗(t + C) − F ∗(t)

)= 0 for all C > 0, (2.18)
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then

lim
t→∞

1 − N(t)

1 − F(t)
= 1.

Note that condition (2.17) is fulfilled for Weibull’s distribution (1.3) with α > 0 and for
the distributions of form (1.4) with 0 < γ < 1 (in fact, condition (2.17) follows from (1.1)).
Condition (2.18) (which includes the case (1.3) with 0 < α < 1) guarantees the exact asymp-
totics for 1 − N(t). In the case of α � 1, the asymptotics of 1 − N(t) is distinguished by
the existence of bifurcations with respect to α. However, a derivation of the exact expansion
formulas for 1 − N(t) when α � 1 still remains an unsolved problem. In view of extremal
type limit theorems for eigenvalues (cf. Sect. 2.1 above), we can guess the first few terms of
the expansion when α � 1: 1 − N(t) = exp{−tα + C0tα−2(1 + o(1))} as t → ∞.

If F(·) satisfies (2.1) with 0 < ρ < ∞ (i.e., the double exponential case), the asymptotic
logarithmic formulas for the Lifshitz tails are given in [25]. In [11], these formulas are
extended to the case of bounded from above potentials, i.e., esssup ξ(0) < ∞. The proof of
their results relies on the asymptotic formulas for statistical moments of the solutions of the
corresponding parabolic problem. For a detailed background of the theory of the spectral
distribution function and related topics, the reader is referred to [13, 34, 39, 47].

3 Extremal Properties of i.i.d. Potential

In this section we investigate the asymptotic geometric structure of extreme values of
{ξ(x) : x ∈ V } as V ↑ Z

ν . We assume throughout that ξ(· ) is an i.i.d. random field with
a (common) right-continuous distribution function F(t) such that F(t) < 1 for each t ∈ R

(i.e., unbounded from above potential).

3.1 Sets of Exceedances

We first study the almost sure (a.s.) asymptotic properties of the set of exceedances

�V,ε := {x ∈ V : ξ(x) � LV,ε}, (3.1)

where

LV,ε := f ((1 − ε) log |V |)
for 0 < ε < 1; here f (· ) is given by (1.5). We are especially interested in the minimum
distance between two exceedances

r(�V,ε) :=
{

min{|x − y| : x ∈ �V,ε, y ∈ �V,ε, x �= y} if |�V,ε| � 2,

|V |1/ν if |�V,ε| � 1; (3.2)

here the second line is to involve the case of the “trivial” rare subset �V,ε .
Clearly, for each 0 < ε < 1,

E|�V,ε| (= the mean number of exceedances)

= |V |(1 − F(LV,ε−)) � |V |ε → ∞ as |V | → ∞,
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according to the upper estimate in (1.6). We insert the following condition

1 − F(t−)

1 − F(t)
→ 1 as t → ∞, (3.3)

which together with (1.6) guarantees the convergence

lim
V

E|�V,ε|
|V |ε = 1.

Lemma 3.1 [3, 6] (i) If F(· ) satisfies condition (3.3), then a.s.

lim
V

|�V,ε|
|V |ε = 1 for 0 < ε < 1

and

lim
V

log r(�V,ε)

log |V | = 1 − 2ε

ν
for 0 < ε <

1

2
.

(ii) If ε > 1
2 , then a.s.

lim
V

r(�V,ε) = 1.

In what follows, we need some additional statements related to the statements of
Lemma 3.1.

Remark 3.2 From the proof of Lemma 3.1 in [3, p. 273] we know that

(i)

max

{

P
(|�V,ε| � 2|V |ε) ,P

(

|�V,ε| � 1

2
|V |ε
)}

� e−const|V |ε (3.4)

for any 0 < ε < 1, any V , and some const = const(ε, ν) > 0;
(ii)

P
(
r(�V,ε) � |V |(1−ε−θ)/ν

)
� |V |−const′

for any 0 < ε < θ < 1/2 and for some const′ = const′(ε, θ, ν) > 0.

Remark 3.3 Fix K ∈ N. By Theorems 1 and 2 of [41, pp. 407, 408] we have that
lim supV |ηK,V − log |V ||/ log2 |V | = 1/K a.s. Combining this with formulas (1.7)–(1.9),
we obtain the following assertion: if

f (t + C log t) − f (t) → 0 as t → ∞
for some C > 1/K , then a.s.

ξK,V = f (log |V |) + o(1) as |V | → ∞.

The latter means that the K th larger values ξK,V are close to extremely high levels L0,V :=
f (log |V |) (cf. Lemma 3.1).
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In the next lemma, we treat the asymptotic structure of subsets of bounded size formed
by high-level exceedances by ξ(· ) in V , i.e., statement (ii) of the previous lemma is specified
more precisely.

Given i ∈ N and R ∈ N, let V i,R stand for a family of subsets U ⊂ V such that |U | = i

and diamU := maxx∈U,y∈U |x − y| � R. Write ξ(U) := minx∈U ξ(x) and

�
i,R
V,ε := {U ∈ V i,R : ξ(U) � LV,ε}.

As in (3.2) we abbreviate

r(�
i,R
V,ε) := min{dist(U,U ′) : U ∈ �

i,R
V,ε, U ′ ∈ �

i,R
V,ε, U �= U ′} if |�i,R

V,ε| � 2,

and r(�
i,R
V,ε) := |V |1/ν if |�i,R

V,ε| � 1, by convention; here dist(U,U ′) stands for the lattice
distance between subsets U,U ′ ⊂ V .

Lemma 3.4 [6] Fix constants i ∈ N\{1} and R ∈ N arbitrarily. If F(· ) satisfies condi-
tion (3.3), then the following assertions hold true almost sure.

In the case of i−1
i

< ε < i
i+1 ,

lim
V

log |�i,R
V,ε|

log |V | = 1 + i(ε − 1)

and

lim inf
V

log r(�
i,R
V,ε)

log |V | � 2i(1 − ε) − 1

ν
;

meanwhile, for ε < i−1
i

,

lim
V

|�i,R
V,ε| = 0.

3.2 Differences in Height

We now study the asymptotic behavior of the minimum of the gaps ξk,V − ξl,V for 1 � k <

l = O(|V |ε). Write

s(�V,ε) :=
{

min{|ξ(x) − ξ(y)| : x ∈ �V,ε, y ∈ �V,ε, x �= y} if |�V,ε| � 2,

0 if |�V,ε| � 1; (3.5)

here �V,ε ⊂ V is defined by (3.1) and 0 < ε < 1.

Lemma 3.5 Fix 0 < ε < 1 arbitrarily, and let s(�V,ε) be defined by (3.5). If F(· ) is log-
Hölder continuous of order μ > 0 at infinity (i.e., (1.2) holds), then a.s.

lim sup
V

log{− log(s(�V,ε) ∧ 1)}
log |V | � 1 + ε

μ
. (3.6)

Proof It suffices to show (3.6) for a sequence of torus V (l) (l ∈ N) with the following
properties:

V (l) monotone increases and |V (l)| = 2l (1 + o(1)) as l → ∞. (3.7)
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Abbreviate LV := LV,ε , �V := �V,ε , and dV := exp{−|V |d}, where d > (1+ε)/μ. By (3.4)
we have that

P (s(�V ) < dV )

� P

(

s(�V ) < dV ,
1

2
|V |ε < |�V | < 2|V |ε

)

+ O
(

e−const|V |ε )

�
∑

V ′
P
(
s (�V ) < dV ,�V = V ′)+ O

(
e−const|V |ε) , (3.8)

where the summation
∑

V ′ is taken over all subsets V ′ ⊂ V such that 1
2 |V |ε < |V ′| < 2|V |ε .

Clearly

P
(
s(V ′) < dV ,�V = V ′)

�
∑

x∈V ′,y∈V ′
x �=y

P (|ξ(x) − ξ(y)| < dV , ξ(x) � LV , ξ(y) � LV )

× P (ξ(0) � LV )|V ′ |−2
P (ξ(0) < LV )|V \V ′ |

� const |V |2P (|ξ(0) − ξ(y)| < dV , ξ(0) � LV )P
(
�V = V ′) (3.9)

for fixed y ∈ Z
ν\{0}. Combining (3.8) and (3.9), we get that, for any V ⊃ V0,

P (s(�V ) < dV )

� const |V |2E [(F (ξ(0) + dV ) − F (ξ(0) − dV ))1 {ω : ξ(0) � LV }]
+ exp {− const |V |ε} � const′ |V |1+ε−μd

by (1.2). Since the expression on the right is summable over V (l) (l ∈ V ) for arbitrary
d > (1 + ε)/μ, the Borel–Cantelli lemma implies (3.6) for V (l) instead of V , as desired. �

4 The First K Extreme Eigenvalues, K = O(|V |ε)

In this section, we study the asymptotic structure of the first K = O(|V |ε) extreme eigen-
values λk,V and localization properties of the corresponding (normalized) eigenfunctions
ψ(·;λk,V ) of the Anderson Hamiltonian HV = κ�V + ξ(·) in l2(V ) when V ↑ Z

ν and
0 < ε < 1

2 . In Theorem 4.1 we assume that the distribution function F(·) of ξ(0) satisfies
conditions (1.1) and (1.2). At the end of the section, we consider the case of (2.1) with suf-
ficiently large ρ/κ (Theorem 4.4). In both cases, a “typical” configuration {ξ (ω)(x) : x ∈ V }
possesses properties (2.5)–(2.8) for any large V due to Lemmas 3.1 and 3.5. For such ξ (ω)(· ),
we apply finite-rank perturbation results (i.e., Theorem B.3) on the upper part of spectrum
of HV .

To be more precise, let us introduce additional notation we use throughout Sect. 4. Fix
0 < θ < 1

2 and write LV,θ := f ((1 − θ) log |V |). Let the subset �V,θ ⊂ V be defined by
(3.1), i.e., consisting of sites at which ξ(·) exceeds the level LV,θ . By ξ̃ (·) we denote the
“noise” potential, viz. ξ̃ (x) := ξ(x) if ξ(x) < LV,θ , and ξ̃ (x) := 0 otherwise. Abbreviate
also

ξ ∗(x) := ξ(x) ∨ (LV,θ + 2νκ) (x ∈ Z
ν).
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Given z ∈ V , we now consider the principal eigenvalue λ̃(z) of the “single peak” Hamil-
tonian

κ�V + ξ̃ (·) + ξ ∗(z)δz in l2(V );
here δz stands for the Kronecker symbol. As mentioned in Appendix B (Remark B.5), the
eigenvalue λ̃(z) is the maximal solution of the dispersion equation

G̃V (λ; z, z) = 1

ξ ∗(z)
, (4.1)

where G̃V (λ; ·, ·) is Green’s function of the Hamiltonian κ�V + ξ̃ (·) in l2(V ). We expand
G̃V (λ; z, z) over κ� (Lemma A.2 in Appendix A) to see that the solution λ̃(z) can be pre-
sented in series (2.10)–(2.12). The latter converges for each ω ∈ , since ξ ∗(x) − ξ̃ (y) >

2νκ (x ∈ V,y ∈ V ) by the definition.
Now, let

λ̃1,V � λ̃2,V � · · · � λ̃|V |,V (4.2)

be the variational series of the sample {̃λ(x) : x ∈ V }. Let {τ(1), τ (2),

. . . , τ (|V |)} be a (random) permutation of the numbers {1,2, . . . , |V |} defined as follows.
Write τ(0) := 0 by convention, and for each 1 � K � |V |,

τ(K) := τV (K) := min
{
1 � l � |V | : λ̃(zl,V ) = λ̃K,V and

l �= τV (k) for each 0 � k � K − 1}. (4.3)

Here, remember, the sites zl,V ∈ V (1 � l � |V |) are associated with the variational series
based on the sample {ξ(x) : x ∈ V }; cf. (1.7)–(1.9). Thus

λ̃(zτ(K),V ) = λ̃K,V for all 1 � K � |V |. (4.4)

In order to stress the dependence of τ(K) on V , we frequently use notation τV (K) instead
of τ(K). Write

JV := [|V |(1+θ)/μ] where μ >
(1 + θ)ν

1 − 2θ
. (4.5)

Theorem 4.1 Fix 0 < θ < 1
2 . Assume that F(·) satisfies conditions (1.1)–(1.2) for some

μ > (1 + θ)ν/(1 − 2θ). Then for any ε ∈ (0, θ) the following almost sure limits hold:

lim sup
V

max
1�k�|V |ε

log |λk,V − λ̃k,V |
JV AV (k)

� −2, (4.6)

lim inf
V

min
1�k<l�|V |ε

log(̃λk,V − λ̃l,V )

JV

� −1

and

lim sup
V

max
1�k�|V |ε

max
x �=zτ(k),V

log |ψ(x;λk,V )|
AV (k)|x − zτ(k),V | � −1,
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where, for all 1 � k � |V |ε ,

AV (k) := log
(
λ̃k,V − LV,θ

)
� log(LV,ε′ − LV,θ ) → ∞

as |V | → ∞, for each ε′ ∈ (ε, θ).

Corollary 4.2 If the conditions of Theorem 4.1 are fulfilled and ε ∈ [0, θ), then the following
almost sure assertions hold true.

(i)

lim
V

log #{λ ∈ Spect(HV ) : λ � LV,ε}
log |V | = ε.

(ii) For an arbitrary sequence {KV } ⊂ N such that (logKV )/log |V | → ε,

lim
V

log τV (KV )

log |V | = ε.

(iii) For arbitrarily fixed K ∈ N if, in addition, f (t + C log t) − f (t) → 0 as t → ∞ for
some C > 1

K
, then

lim
V

(
λK,V − f (log |V |))= 0.

Proof of Corollary 4.2 First, combining Lemma 3.1(i) with Theorem 4.1 we obtain asser-
tion (i) which in turn yields assertion (ii). Finally, (iii) follows from (4.6), Lemma 3.1(i) and
Remark 3.3. �

Proof of Theorem 4.1 For arbitrarily fixed ε′ ∈ (ε, θ), we define the subset �̃V ⊂ �V,θ by

�̃V := {u ∈ �V,θ : λ̃(u) � LV,ε′ + 2νκ}

for each V ⊃ V0.

Lemma 4.3 (cf. Lemma 3.5) Let F(·) satisfy the conditions of Theorem 4.1. Then with
probability 1

min
{|̃λ(x) − λ̃(y)| : x ∈ �̃V , y ∈ �̃V , x �= y

}
� e−JV /2 (4.7)

for any V ⊃ V0.

The lemma is shown below.
We now finish the proof of Theorem 4.1 by combining Lemmas 3.1(i) and 4.3 with

Theorem B.3. By ′ ∈ F we denote the following event

′ := {ω : for any δ ∈ {1/2,1/3,1/4, . . .} there is V0 = V0(ω; δ, ε′, θ)

such that, for any V ⊃ V0, the sample {ξ (ω)(x) : x ∈ V }
satisfies assumptions (B.25)–(B.29) of Theorem B.3

with L := LV,θ , h := LV,ε′ − LV,θ and K := [|V |ε]}.
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Noting that LV,ε′ − LV,θ → ∞ as |V | → ∞ and using Lemmas 3.1(i) and 4.3, we obtain
that P(′) = 1. Consequently, Theorem B.3 immediately implies the assertions of Theo-
rem 4.1. �

Proof of Lemma 4.3 For each z ∈ V , let λ(JV )(z) be the principal eigenvalue of the Hamil-
tonian

κ�V +
∑

y : 1�|y−z|�JV

ξ̃ (y)δy + ξ ∗(z)δz in l2(V ).

We now turn to equation (4.1) for the eigenvalue λ̃(z), and expand the left-hand side of (4.1)
over κ� as in (2.10)–(2.12) (and the same for the eigenvalue λ(JV )(z)); z ∈ �̃V . From this,
it is straightforward to obtain with probability one that

∣
∣̃λ(x) − λ(JV )(x)

∣
∣� const

(
2νκ

λ(JV )(x) − LV,θ

)2JV −1

for any x ∈ �̃V , (4.8)

for any V ⊃ V0.
To show (4.7), we fix ε̃ ∈ (ε′, θ) and abbreviate

SV := min
{|λ(JV )(x) − λ(JV )(y)| : x ∈ �V,ε̃, y ∈ �V,ε̃, x �= y

}
,

and eV := exp{− 1
4JV }. Because of (4.8) we note that (4.7) is a consequence of the following

estimate a.s.

SV � eV for any V ⊃ V0. (4.9)

Let us prove (4.9). According to Remark 3.2 we have that

P(SV < eV ) �
∑′

P(SV < eV ,�V,ε̃ = V ′) + |V |−const (4.10)

for some const > 0 and for each V ⊃ V0, where the summation
∑′ is taken over all subsets

V ′ ⊂ V satisfying the following two conditions: first, 1
2 |V |ε̃ � |V ′| � 2|V |ε̃ and, second,

the minimum distance between sites in V ′ is larger than |V |(1−ε̃−θ)/ν . Noting that λ(JV )(x)

is a function of the variables ξ(u) (|u − x| � JV ) and recalling the definition of JV (4.5),
we see that the random variables λ(JV )(x) and λ(JV )(y) are independent, provided x ∈ V ′,
y ∈ V ′\{x}. As in (3.9), we then get that

P(SV < eV ,�V,ε̃ = V ′)

� const |V |2P(|λ0 − λz| < eV , ξ(0) � LV,ε̃, ξ(z) � LV,ε̃

)
P(�V,ε̃ = V ′), (4.11)

with λ0 := λ(JV )(0) and λz := λ(JV )(z) for |z| > JV . Let G(z,JV )

V (λ; ·, ·) be Green’s function
of the Hamiltonian

κ�V +
∑

y : 1�|y−z|�JV

ξ̃ (y)δy in l2(V ).

Using the resolvent identity

G(z,JV )

V (λz; z, z) − G(z,JV )

V (λ0; z, z) = (λ0 − λz)G(z,JV )

V (λ0)G(z,JV )

V (λz)δz(z)
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combined with the equation

G(z,JV )

V (λ; z, z) = 1

ξ ∗(z)

for λz, we obtain that

∣
∣ξ ∗(z) − 1/G(z,JV )

V (λ0; z, z)∣∣� const |λ0 − λz|

for V ⊃ V0. Substituting this into the right-hand side of (4.11) and combining the latter with
(4.10), we find that

P(SV < eV )

� const |V |2E[(F (1/G(z,JV )

V (λ0; z, z) + const eV

)

− F
(
1/G(z,JV )

V (λ0; z, z) − const eV

))
1{ξ(0) � LV,ε̃}

]+ |V |− const

� const′ |V |2| log eV |−μ
P(ξ(0) � LV,ε̃) + |V |− const

� const
′′ |V |ε̃−θ + |V |− const; (4.12)

here the second estimate follows from the log-Hölder continuity of F(·). Pick a subsequence
of torus {V (l) : l ∈ N} satisfying (3.7). Since the expression on the right of (4.12) is sum-
mable over {V (l)}, the Borel–Cantelli lemma implies (4.9) for V (l). This is easily extended
to an arbitrary sequence {V }. Lemma 4.3 is proved. �

We end this section with a discussion on the case when (2.1) holds, i.e.,

lim
t→∞
(
f (t) − f (δt)

)= −ρ log δ for all 0 < δ < 1, (4.13)

provided the ratio ρ/κ is large enough. Recall that, for arbitrary 0 � ρ � ∞, condition (4.13)
ensures the a.s. second-order asymptotics for the principal eigenvalue λ1,V (Proposition 2.1
in Sect. 2.1). As in the proof of Theorem 4.1, we obtain the following theorem.

Theorem 4.4 Fix constants κ > 0, ρ > 0, 0 < θ < 1
2 and 0 < ε < θ such that the constant

A(ρ,κ, θ, ε) := log

(
1

2ν

ρ

κ
log

1 − ε

1 − θ

)

> 0 is large enough

(say, A(ρ,κ, θ, ε) � log(36ν)). Assume that F(·) satisfies conditions (4.13) and (1.2) for
some μ > (1 + θ)ν/(1 − 2θ). Then with probability one the assertions of Theorem 4.1 are
fulfilled with

AV (k) := log
λ̃k,V − LV,θ

2νκ
� A(ρ,κ, θ, ε) for any 1 � k � |V |ε.

Recall that, under the conditions of Theorem 4.1 (i.e., the case of (4.13) with ρ = ∞),
with probability one log τV (K) = o (log |V |) when |V | → ∞ and K ∈ N is fixed (see Corol-
lary 4.2(ii) with ε = 0). Theorem 4.4 tells us that in the case of (4.13) with ρ/κ large enough,
the eigenvalue λK,V still corresponds to an isolated ξV -peak. This statement is now specified
more precisely in the following corollary.
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Corollary 4.5 Under the conditions of Theorem 4.4 for some 0 < θ < 1
2 , we have the fol-

lowing limits in probability for fixed K ∈ N:

lim
ρ/κ→∞ lim

V

(
λK,V − f (log |V |)) 1

ρ

(
ρ

κ

)2

log
ρ

κ
= ν (4.14)

and

lim
ρ/κ→∞ lim

V

log τV (K)

log |V |
(

ρ

κ
log

ρ

κ

)2

= ν

2
.

Sketch of the proof We show that the first two asymptotic terms of λK,V are carried by a
ξV -peak and its nearest neighbor values.

Since our equation κ�ψ +ξ(·)ψ = λψ is reduced to the new one: κ ′�ψ +ξ ′(·)ψ = λ′ψ ,
where κ ′ := κ/ρ, λ′ := λ/ρ and the distribution function of ξ ′(0) satisfies (4.13) with ρ = 1,
it suffices therefore to show Corollary 4.5 for ρ = 1, i.e., when κ → 0.

Using condition (4.13) and taking into account Remark 3.3 and the proof of (2.16), we
obtain that a.s.

|λK,V − f (log |V |)| < 3νκ (4.15)

for fixed K ∈ N, κ > 0 and each V ⊃ V0(κ). According to Theorem 4.4, we may expand
λK,V as in (2.9)–(2.12) and then apply (4.15) and (4.13) with ρ = 1 to estimate the terms of
this expansion. We therefore obtain the following estimates a.s.

ζ
(−)
K,V − constκ3 � λK,V � ζ

(+)
K,V + constκ3 (4.16)

for fixed K ∈ N, small κ and each V ⊃ V0(κ); here const > 0 does not depend on κ and

ζ (±)(x) := ξ(x) + 2νκ2

f (log |V |) − ξ (±)(x) ∧ LV,θ

(x ∈ V ),

where ξ (+)(x) := max|y|=1 ξ(y + x) and ξ (−)(x) := min|y|=1 ξ(y + x). By f (±)(·) denote the
inverse function of − log P(ξ (±)(0) > t), t ∈ R. From (4.13) with ρ = 1 we have that

f (+)(t) − f (t) → 0 and f (−)(t) − f (t) → − log(2ν) as t → ∞. (4.17)

In view of (4.16), it suffices to show assertion (4.14) (ρ = 1) for ζ
(±)
K,V instead of λK,V . Let

us consider ζ
(+)

1,V . Pick up a sequence of partitions 0 =: ε0 < ε1 < · · · < εn := 1/3 (n ∈ N)

of the interval [0,1/3] such that maxi�n(εi − εi−1) → 0 as n → ∞. Clearly a.s.

ζ
(+)

1,V = max
1�i�n

max
|V |εi−1 �k�|V |εi

ζ (+)(zk,V )

� max
1�i�n

(

ξ[|V |εi−1 ],V + 2νκ2

f (log |V |) − max
k�|V |εi

ξ (+)(zk,V )

)

(4.18)

for V ⊃ V0. To estimate the right-side of (4.18), we need additional statements which follow
from more general results given in [6].
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Lemma 4.6 [6] Fix a sequence {KV } such that KV → ∞ and KV = O(|V |ε) (as |V | → ∞)
for some 0 < ε < 1/2. Then

(i)

√
KV max

KV �l�|V |

∣
∣
∣
∣ηl,V − log

|V |
l

∣
∣
∣
∣= O(1) in probability

and
(ii)

max
1�l�KV

ξ (±)
(
zl,V

)= f (±) (logKV + O(1)) in probability

as |V | → ∞.

Now, the first summand (resp., the second summand) under maxi�n in (4.18) is esti-
mated by applying Lemma 4.6(i) with KV = |V |εi−1 (resp., Lemma 4.6(ii) with KV = |V |εi ),
where, as before, we use formulas (1.7)–(1.9). In view of (4.13) and the first limit in (4.17),
we therefore obtain that the right-hand side of (4.18) is equal to

f (log |V |) + max
i�n

(

log(1 − εi−1) − 2νκ2

log εi

)

+ o (1) as |V | → ∞

in probability. Moreover, the last limit may be taken uniformly in partitions {εi : 0 ≤ i ≤ n}
because of the fact that exp{f (·)} is a regularly varying function with exponent 1 and, conse-
quently, f (t) − f (δt) → − log δ (as t → ∞) uniformly on each close subinterval of (0,1).
Summarizing these assertions, we obtain that, as |V | → ∞,

ζ
(+)

1,V − f (log |V |) → sup
0<ε�1/3

g(+)(ε)

in probability, where g(+)(ε) := log(1 − ε) − 2νκ2/ log ε and κ is small enough. Similarly
we have that

ζ
(−)
K,V − f (log |V |) → sup

0<ε�1/3
g(−)(ε)

in probability, where g(−)(ε) := log(1 − ε) − 2νκ2/ log( ε
2ν

) and κ is small enough. The
functions g(±)(·) attain their maximum at the points ε∗ = ε∗(κ) ∈ (0,1/3) such that

ε∗ = ν

2

(
κ

logκ

)2

(1 + o (1)) and g(±)(ε∗) = − νκ2

logκ
(1 + o (1)) (4.19)

as κ ↓ 0. Thus, (4.14) is proved.
These arguments imply also that the random functions ζ (±)(zk,V ) and thus λ̃(zk,V )

(1 � k � |V |1/3) attain their maximum at k∗
V such that log k∗

V / log |V | = ε∗(κ) + o (1) as
|V | → ∞ in probability, for κ small enough. This together with the first limit in (4.19)
concludes the proof of the second assertion of Corollary 4.5. �
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5 Extremal Type Limit Theorems for the First K Eigenvalues, K Fixed

In this section, we study joint limit distributions of a finite number of the first extreme
eigenvalues λK,V . In Sect. 5.1, we consider the case when the distribution function F(·)
satisfies conditions (1.1) and (1.2).

In Sect. 5.2, we briefly discuss the case of − log(1 − F(t)) = o (t3), i.e., a poten-
tial with extremely sharp peaks. This condition implies that the main contribution to the
extreme eigenvalue λK,V = λ(zK,V ) comes from the first two terms of expansion (2.9)–
(2.12) with z0 = zK,V ; i.e., λK,V = ξK,V + 2νκ2/ξK,V + O(1/ξ 2

K,V ). Therefore, in extremal
limit theorems, the normalizing constants for λK,V may be chosen the same as those for
ξK,V + 2νκ2/ξK,V . This is illustrated by an example with polynomially decaying tails of
distributions.

5.1 General Conditions on Distributions

The main result of this subsection is Theorem 5.2 concerning joint limit distributions for
the normalized eigenvalues (λK,V −BV )AV and their spacings (λK,V −λK+1,V )AV for fixed
K ∈ N. The normalizing constants AV > 0 and BV ∈ R are expressed in terms of distrib-
utional tails of the random variable λ̃(z). Recall that, for each z ∈ V , λ̃(z) is the principal
eigenvalue of the “single peak” Hamiltonian κ�V + ξ̃ (·) + ξ ∗(z)δz in l2(V ) and λ̃(z) is
expanded in series (2.12) over ξ̃ (x)/ξ ∗(z), x ∈ V (see Sect. 4).

Extremal type limit theorems for ξK,V (i.e., the case κ = 0 in our model) are well known
in mathematical literature (e.g., [19, 33, 40]). Let esssup ξ(0) = ∞, and assume that there
exist constants aV > 0 and bV ∈ R such that the sequence of distributions

P
(
(ξ1,V − bV )aV � t

)= F |V |(bV + t/aV ), t ∈ R,

converges (as |V | → ∞) to a nondegenerate distribution function G(·) at any continuity
point of G(·). (G(·) is called degenerate if G(·) is an indicator function of interval). Then
G(·) must be one of the following max-stable distributions:

Gβ(t) =
{

exp{−t−β} if t � 0,

0 if t < 0,
(5.1)

for some β > 0, and

Gexp(t) = exp{− e−t }, t ∈ R (5.2)

(up to scale transformations Gβ(at +b) and Gexp(a
′t +b′), t ∈ R, for some constants a > 0,

a′ > 0, b ∈ R and b′ ∈ R). Moreover, in the case of limit Gβ(·) we may choose bV ≡ 0. See
Chap. 1 of [33] for a detailed discussion on the subject.

Let us introduce the following functions

Gβ(s1, . . . , sK−1; s) = β

(K − 1)!
(K−1∏

l=1

s
−lβ

l

)∫ ∞

s

v−Kβ−1 exp{−v−β}dv (5.3)

with sl � 1 (1 � l � K − 1), s � 0, and

Gexp(t1, . . . , tK−1; t) = 1

(K − 1)!
(K−1∏

l=1

e−ltl

)∫ ∞

t

exp{−Kv − e−v}dv (5.4)
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with tl � 0 (1 � l � K − 1) and t ∈ R. Here
∏0

l=1 . . . := 1.

Theorem 5.1 (see [33]) (i) If there are constants aV > 0 such that

lim
V

|V |(1 − F(s/aV )
)= − logGβ(s)

for each s � 0, then

lim
V

P

(
ξ1,V

ξ2,V

> s1, . . . ,
ξK−1,V

ξK,V

> sK−1, ξK,V aV > s

)

= Gβ(s1, . . . , sK−1; s)
for any sl � 1 (1 � l � K − 1) and any s � 0.

(ii) If there are constants aV > 0 and bV ∈ R such that

lim
V

|V |(1 − F(bV + t/aV )
)= − logGexp(t)

for each t ∈ R, then

lim
V

P
(
(ξ1,V − ξ2,V )aV > t1, . . . , (ξK−1,V − ξK,V )aV > tK−1, (ξK,V − bV )aV > t

)

= Gexp(t1, . . . , tK−1; t)
for any tl � 0 (1 � l � K − 1) and t ∈ R.

We now turn to extremal type limit theorems for the eigenvalues λK,V . Let λ̃(z) be the
principal eigenvalue of the “single peak” Hamiltonian κ�V + ξ̃ (·) + ξ ∗(z)δz; z ∈ V . From
Lemma 7(ii) of [5] we know that if, for some constants AV > 0 and BV ∈ R, the sequence
of distributions P

|V |(̃λ(0) � BV + t/AV ), t ∈ R, has (as |V | → ∞) a nondegenerate limit
G(·), then G(·) must be one of max-stable distributions (5.1) and (5.2) (up to scale transfor-
mation).

Theorem 5.2 (cf. Theorem 4 of [5]) Assume that F(·) satisfies conditions (1.1) and (1.2)
for some constants μ > (1 + θ)ν/(1 − 2θ) and 0 < θ < 1/2.

(i) If there are constants AV > 0 such that

lim
V

|V |P(λ̃(0) > s/AV

)= − logGβ(s)

for each s � 0, then

lim
V

P

(
λ1,V

λ2,V

> s1, . . . ,
λK−1,V

λK,V

> sK−1, λK,V AV > s

)

= Gβ(s1, . . . , sK−1; s) (5.5)

for any sl � 1 (1 � l � K − 1) and any s � 0.
(ii) If there are constants AV > 0 and BV ∈ R such that

lim
V

|V |P(λ̃(0) > BV + t/AV

)= − logGexp(t) (5.6)
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for each t ∈ R, then

lim
V

P
(
(λ1,V − λ2,V )AV > t1, . . . , (λK−1,V − λK,V )AV > tK−1, (λK,V − BV )AV > t

)

= Gexp(t1, . . . , tK−1; t) (5.7)

for any tl � 0 (1 � l � K − 1) and t ∈ R.

Proof It suffices to prove part (ii), since the proof of part (i) is similar. Using the notation
of Sect. 4 (in particular, JV ∈ N given by (4.5)), we again consider the principal eigenvalue
λ(JV )(z) of the Hamiltonian κ�V +∑y : 1�|y−z|�JV

ξ̃ (y)δy + ξ ∗(z)δz in l2(V ); z ∈ V . Let

λ
(JV )

1,V � λ
(JV )

2,V � · · · � λ
(JV )

|V |,V be the variational series of the sample {λ(JV )(z) : z ∈ V }.

Lemma 5.3 Under the conditions of Theorem 5.2(ii), we have extremal type limit theorem
(5.7) for λ

(JV )

l,V replacing λl,V (1 � l � K).

Lemma 5.3 is proved below.
Theorem 4.1 and (4.8) imply that a.s.

max
1�k�|V |ε

|λk,V − λ
(JV )

k,V | = O

(
const

LV,ε − LV,θ

)2JV −1

(5.8)

as |V | → ∞, for 0 < ε < θ . We now obtain the assertion of Theorem 5.2(ii) by combining
Lemma 5.3, limit (5.8) and the following lemma:

Lemma 5.4 If the conditions of Theorem 5.2(ii) are fulfilled, then

lim sup
V

logAV

JV

� 0.

It remains to prove Lemmas 5.3 and 5.4.

Proof of Lemma 5.3 It suffices to check that λ(JV )(· ) satisfies Leadbetter’s mixing condi-
tions slightly modified for random fields. We first note that λ(JV )(x) (x ∈ Z

ν ) form an array
of identically distributed random variables with dependence range constJV = o(|V |1/ν).
Therefore, according to Theorem 5.7.2 in [33], we only need to check the following (local
dependence) condition:

lim sup
V

∑

y∈V

∑

0<|x|<(|V |/K)1/ν

P
(
λ(JV )(y) > uV ,λ(JV )(y + x) > uV

)→ 0 as K → ∞, (5.9)

with uV := BV + A−1
V t and fixed t ∈ R. Taking into account the definition of the variables

λ(JV )(· ) and noting that uV − LV,θ → ∞ as |V | → ∞, we obtain that the double sum under
the limit in (5.9) does not exceed

|V |
∑

0<|x|�JV

P
(
λ(JV )(0) > uV ,λ(JV )(x) > uV

)

+ const

K

(|V |P(λ(JV )(0) > uV )
)2
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� |V |
∑

0<|x|�JV

P
(
ξ(0) > LV,θ , ξ(x) > LV,θ

)+ const′

K

� const′′ J ν
V |V |2θ−1 + const′ K−1,

where J ν
V = o(|V |1−2θ ) by (4.5). Thus, passing to the limits, as first |V | → ∞ and then

K → ∞, we arrive at (5.9), as claimed. �

Proof of Lemma 5.4 Fix an arbitrary t > 0, and write TV := t/AV . Assume for a moment
that TV ′ < exp{− constJV ′ } for some subsequence {V ′}, |V ′| → ∞. Then, arguing as in the
proof of Lemma 4.3,

P
(|λ(JV ′ )

1,V ′ − BV ′ | < TV ′
)
� |V ′|− const → 0

as |V ′| → ∞. This contradicts to the nondegenerity of G(· ), and, therefore, Lemma 5.4 is
proved. �

5.2 Distributions with Heavy Tails (Discussion)

In this section, we analyze the first few asymptotical terms of λK,V = λ(zK,V ) in expansion
(2.9)–(2.12) with z0 = zK,V for fixed K ∈ N.

For p � 0 and c � 0, we introduce the function f (s;p; c) :=
f (s)p(f (s + c) − f (s)), s > 0. The condition

lim
s→∞f (s;p; c) = ∞ for any 0 < c < 1 (5.10)

implies that

lim
V

ξ
p

K+1,V (ξK,V − ξK+1,V ) = ∞ in probability (5.11)

for fixed K ∈ N. We impose the additional condition (stronger than (1.1))

lim sup
s→∞

f ((1 − ε)s)

f (s)
< 1 for some 0 < ε <

1

2
(5.12)

to guarantee the distinct difference in height between the “noise” potential ξ̃ (·) and a peak
ξK,V , viz.

lim sup
V

max
x∈V

ξ̃ (x)/ξK,V < 1 in probability. (5.13)

Taking into account such a strongly pronounced asymptotic structure of ξV -peaks (i.e., limits
(5.11), (5.13) and Lemma 3.1) and using the same arguments as in the proof of Theorems 4.1
and 5.2, we obtain the following statements illustrating very simple asymptotic structure of
the extreme eigenvalues λK,V .

Theorem 5.5 Fix K ∈ N. Assume that f (·) satisfies (5.12) and the following condition

lim
s→∞f (s;1; c) = ∞ for any 0 < c < 1.
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Then

lim sup
V

ξK,V |λK,V − ξK,V | < const in probability (5.14)

for some (nonrandom) const > 0. Moreover, by (5.14) and (5.11) with p = 1 we obtain
limit theorem (5.5) for λk,V (1 � k � K) provided limV |V |P (ξ(0) > s/AV ) = − logGβ(s)

(s � 0), or limit theorem (5.7) for λk,V (1 � k � K) provided limV |V |P(ξ(0) > BV +
t/AV ) = − logGexp(t) (t ∈ R).

Write

ξ (0)(x) := ξ(x) + 2νκ2

ξ(x) ∨ 1
(x ∈ Z

ν).

Theorem 5.6 Fix K ∈ N. Assume that f (·) satisfies (5.12) and the following condition

lim
s→∞ inf

a∈(c,θs)

(

f (s;2;a) − f (2a)

c

)

= ∞ for any 0 < c < 1 and some θ ∈ (ε,1/2).

Then

lim sup
V

ξ 2
K,V |λK,V − ξ

(0)
K,V | < ∞ in probability. (5.15)

Moreover, by (5.15) and (5.11) with p = 2 we obtain limit theorem (5.5) for λk,V

(1 � k � K) provided limV |V |P(ξ (0)(0) > s/AV ) = − logGβ(s) (s � 0), or limit theo-
rem (5.7) for λk,V (1 � k � K) provided limV |V |P(ξ (0)(0) > BV + t/AV ) = − logGexp(t)

(t ∈ R).

A detailed proof of Theorems 5.5, 5.6 and related statements will be carried out in our
forthcoming papers [6] and [7].

Remark 5.7 We note that, under the conditions of Theorem 5.5, the normalizing constants
AV and BV for λK,V are chosen the same as those for ξK,V .

Remark 5.8 According to [6], for fixed p � 0, condition (5.10) implies that
− log(1 − F(t)) = o(tp+1) (as t → ∞), i.e., heavy tails of the distribution function F(· ).
Note that, under the assumptions of Theorems 5.5 or 5.6, condition on log-Hölder continuity
of F(· ) is removed.

Example 5.9 Assume that

1 − F(t) = t−β(1 + o(1)) as t → ∞,

where β > 0. In this case, f (s) = es/β+o(1) (as s → ∞) and, therefore, the conditions of
Theorem 5.5 are fulfilled. Moreover, since |V |(1 − F(|V |1/β t)) → t−β for any t > 0, we
obtain extremal type limit theorem (5.5) for λk,V (1 � k � K) with the normalizing constants
AV = |V |−β . Note that AV coincide with the normalizing constants aV in the corresponding
limit theorem for ξk,V (1 � k � K).

In Sect. 6, we consider the case of F(· ) with fractional-exponential tails satisfying the
conditions of Theorems 5.1(ii), 5.2(ii) and 5.6.
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6 Extremal Type Limit Theorems: Distributions with Fractional-Exponential Tails

In this section, we assume that the (common) distribution function F(· ) of the i.i.d. field
ξ(· ) satisfies the condition

1 − F(t) = t−β e−Atα (1 + o(1)) as t → ∞, (6.1)

where α > 0, β ∈ R and A > 0. In the case of α � 3, we additionally claim that F(· ) has a
density p(t) := dF(t)

dt
(t � t0) such that

p(t) = Aαtα−β−1 e−Atα (1 + o(1)) as t → ∞. (6.2)

By the partial integration, condition (6.2) implies (6.1) for each α > 0. Condition (6.1) in
turn implies that

f (s) = (s/A)1/α − β

α2A

log(s/A)

(s/A)1−1/α
+ o
(
s−1+1/α

)
as s → ∞ (6.3)

for each α > 0. Note that the case α = 2, β = 1 and A = (4π)−1 in (6.2) includes the
distribution density of the Gaussian variable ξ(0) with Eξ(0) = 0 and Eξ(0)2 = 2π .

We now abbreviate

lV =
(

log |V |
A

)1/α

and J := [α/2]. For each z ∈ V , let λ(J)(z) be the principal eigenvalue of the Hamiltonian

κ�V +
∑

y : 1�|y−z|�J

ξ̃ (y)δy + ξ ∗(z)δz in l2(V ),

where ξ̃ (x) := ξ(x) if ξ(x) < (2/3)1/αlV and ξ̃ (x) := 0 otherwise, and ξ ∗(· ) :=
ξ(· ) ∨ ((3/4)1/αlV ) (cf. Sect. 4). For α � 3, the distribution function F(· ) satisfies the
conditions of Theorem 4.1 for each 0 < θ < 1/2; therefore, for fixed K ∈ N we have with
probability one that

λK,V = λ
(J)
K,V + O(l−2J−1

V ) = lV + O(l−1
V ) (6.4)

as |V | → ∞, where the second limit follows from (1.7), (6.3) and Remark 3.3. For α < 3,
the function f (· ) (6.3) satisfies the conditions of Theorem 5.6; therefore, for fixed K ∈ N

we have the following limits in probability:

λK,V = ξK,V + 2νκ2

ξK,V

+ O
(
l−2
V

)= lV + O
(
l−1
V

)+ O

(
log lV

lα−1
V

)

(6.5)

as |V | → ∞.
The purpose of the present section is to derive the asymptotic equations for the normal-

izing constants AV > 0 and BV ∈ R appearing in the limit (5.6), i.e., limV |V |P(λ(J )(0) >

BV + t/AV ) = e−t for each t ∈ R. By Theorem 5.2(ii), this immediately implies limit the-
orem (5.7) for the (normalized) extreme eigenvalues (λK,V − BV )AV and their spacings
(λK,V − λK+1,V )AV . See Theorem 6.3 below, i.e., the main result of the present section.

To simplify the proceedings in the case of α � 3, we need some additional notation
and remarks. Write j := [α/2] if α − 2[α/2] > 1 and j := [α/2] − 1 otherwise. Let U :=
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{x : 1 � |x| � j} ⊂ V . We write tU := {tx : x ∈ U} ∈ R
|U |. For g : R

|U | → R, denote g(x) =
∂g

∂tx
, g(xy) = ∂2g

∂tx∂ty
, etc.

Let G(0,j)

V (̃ξU ;λ;x, y) =: G(0,j)

V (λ;x, y) (x ∈ V , y ∈ V ) be Green’s function of the Hamil-
tonian κ�V + ξ̃ (· )1U(· ) in l2(V ). We then introduce the following functions:

g(tU ;λ) := G(0,j)

V (̃tU ;λ;0,0) (6.6)

and

Q(tU ;λ;μ) :=
(

μ

λg(tU ;λ)

)α

+
∑

x∈U

(tx)
α
+, (6.7)

for all λ � lV , μ � lV and all tU ∈ R
|U |; here t̃x := tx1{tx < (2/3)1/αlV } (x ∈ U ) and

t+ := t ∨ 0.

Remark 6.1 In what follows, it is useful to expand g(tU ;DV ) (6.6) over κ� as in
Lemma A.2 with DV = lV (1 + o(1)) instead of λ and with t̃x1U(x) instead of ξ(x) for
x ∈ V . Namely,

g(tU ;DV ) =
∑

�

κ |�|∏

v∈V

(DV − t̃v1U(v))−nv(�); (6.8)

here the summation is taken over the nearest neighbor paths � := �(0,0) in V (starting at 0
and ending at 0) of the length |�| = �vnv(�) − 1 � 0, where nv(�) denotes the number of
times the path � visits the site v ∈ V . The series in (6.8) converges, since the total number
of paths � with |�| = k does not exceed (2ν)k−1. Clearly

g(x)(tU ;DV ) = (DV − t̃x )
−1
∑

�=�x

κ |�|nx(�)
∏

v∈V

(DV − t̃v1U (v))−nv(�) (6.9)

(x ∈ U); here the summation is taken over paths �x with |�x | � 2|x| visiting the site x.
Therefore, as |V | → ∞, the main asymptotic contribution (� l

−2|x|−2
V ) into (6.9) comes

from the summands corresponding to �x,min with |�x,min| = 2|x|, i.e., the shortest paths �x

visiting x. By cx we denote the number of �x,min. Note that

g(x)(tU ;DV ) = κ2|x|cxl
−2|x|−2
V (1 + o(1)),

provided 0 � ty = o(lV ) for each y ∈ U .

For α � 3 and A > 0, we write

C(α) := |U |
2

log
α − 1

2πAα

−
⎧
⎨

⎩

∑

|x|=J

log E exp{Aακα−1cxξ(0)} if α − 2[ α
2 ] = 1,

0 otherwise;

here cx is specified in Remark 6.1.
Let us introduce the following system of equations:

AQ(TU ;B;B) − log |V | + β log lV +
(

β − α

2

)∑

x∈U

logTx + C(α) = 0 (6.10)
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and

Q(x)(TU ;B;B) = 0 for any x ∈ U. (6.11)

If α = 3, then U = ∅ and, therefore, the system of equations (6.10) and (6.11) reduces
simply to equation (6.10) with T∅ := 0 and �x∈∅ . . . := 0. For α > 3 and for arbitrary
V ⊃ V0, the system of equations (6.10) and (6.11) has a solution BV ∈ R+ and TU ;V :=
{Tx;V : x ∈ U} ∈ R

|U |
+ such that

BV = lV + O(l−1
V ) (6.12)

and

Tx;V = (κ2|x|cx

) 1
α−1 l

1− 2|x|
α−1

V (1 + o(1)) for any x ∈ U, (6.13)

as |V | → ∞ (to check this, use the assertions of Remark 6.1).
We finally abbreviate

aV := αAlα−1
V and bV := lV − (β log lV )/aV , (6.14)

and note that limV |V |(1 − F(bV + a−1
V t)) = e−t for each t ∈ R. Therefore, by Theo-

rem 5.1(ii) we obtain the following statement.

Theorem 6.2 (κ = 0) If F(· ) satisfies condition (6.1) with α > 0, then

lim
V

P
(
(ξ1,V − ξ2,V )aV > t1, . . . , (ξK−1,V − ξK,V )aV > tK−1, (ξK,V − bV )aV > t

)

= Gexp(t1, . . . , tK−1; t)
for each tl � 0 (1 � l � K −1) and each t ∈ R, where Gexp(t1, . . . , tK−1; t) is given by (5.4).

With the previous notation and remarks, we are in a position to formulate the main result
of the section.

Theorem 6.3 For α < 3, let F(· ) satisfy condition (6.1). For α � 3, assume that F(· ) has a
density p(t) := dF(t)

dt
(t � t0) satisfying condition (6.2). Let constants aV and bV be defined

by (6.14), and write:

1) BV = bV if α < 2,
2) BV = bV + 2νκ2l−1

V if 2 � α < 3,
and

3) for α � 3, constants BV are defined by the system of equations (6.10) and (6.11).

Then

lim
V

P
(
(λ1,V − λ2,V )aV > t1, . . . , (λK−1,V − λK,V )aV > tK−1, (λK,V − BV )aV > t

)

= Gexp(t1, . . . , tK−1; t)
for each tl � 0 (1 � l � K −1) and each t ∈ R, where Gexp(t1, . . . , tK−1; t) is given by (5.4).

From (6.10) and (6.11) we now get the explicit expressions for the normalizing constants
BV when 3 � α < 4 (cf. [9]).
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Corollary 6.4 Under the conditions of Theorem 6.3 with α � 3, the constants BV may be
taken to be:

(a) BV = bV + c(0)l−1
V + c(3)l1−α

V if α = 3;

(b) BV = bV + c(0)l−1
V + c

(1)

1 l
− α+1

α−1
V + (c(2) log lV + c(3))l1−α

V if 3 < α < (3 + √
17)/2;

(c) BV = bV + c(0)l−1
V +∑2

i=1 c
(1)
i l

− α+2i−1
α−1

V + (c(2) log lV + c(3))l1−α
V if (3+√

17)/2 � α < 4;

and moreover, as |V | → ∞,

(d) BV = lV + c(0)l−1
V +∑2

i=1 c
(1)
i l

− α+2i−1
α−1

V + O(l
− α+5

α−1
V ) + O(l−3

V log lV ) if α � 4.

Here constants c(i) and c
(n)
i are specified as follows:

c(0) := 2νκ2, c
(1)

1 := α − 1

α
2νκ

2α
α−1 , c

(1)

2 := 2νκ
2(α+1)
α−1 ,

c(2) := ν(α − 2β)(α − 3)

Aα(α − 1)

and, finally, c(3) is defined by

c(3) :=

⎧
⎪⎪⎨

⎪⎪⎩

2ν

Aα
log E exp{Aακα−1ξ(0)} if α = 3,

ν

Aα

(
2(α − 2β) logκ

α − 1
+ log

2πAα

α − 1

)

if 3 < α < 4.

Let us show Corollary 6.4. For α = 3, by expanding BV g(0;BV ) in powers of BV and
noting that j = 0, we rewrite equation (6.10) in the form:

A

(
BV

1 + c(0)B−2
V

)3

− log |V | + β log lV + C(3) = εV

for some εV → 0. Iterating this with respect to BV , we obtain expression (a) for BV with
o(a−1

V ) accuracy.
Let 3 < α < 4. In this case, we have that j = 1, U = {|x| = 1} and, by symmetry, Tx;V =

Ty;V for all x, y ∈ U . As an initial approximation for BV , we take lV . Note that, by (6.12),
BV − lV = O(l−1

V ). Looking at Q(TU ;B;B) (6.7) and expanding the expression

(
BV g(TU ;V ;BV )

)−α = ((lV + BV − lV )g(TU ;V ; lV + BV − lV )
)−α

in powers of BV − lV , we may therefore rewrite (6.10) and (6.11) in the form:

AQ(TU ;V ; lV ;BV ) − log |V | + β log lV

+
(

β − α

2

)∑

|x|=1

logTx;V + C(α) = O(lα−4
V ) (6.15)

and

Q(x)(TU ;V ; lV ;BV ) = O(lα−5
V ). (6.16)
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Rewrite (6.15) in the form

Bα
V = (lV g(TU ;V ; lV ))α

[

lαV −
∑

|x|=1

T α
x;V − β

A
log lV

− 1

A

(

β − α

2

)∑

|x|=1

logTx;V − C(α)

A
+ O(lα−4

V )

]

. (6.17)

We substitute this expression into (6.16) to eliminate BV . From this, by using (6.13), we
obtain the equation for Tx;V :

T α−1
x;V g(TU ;V ; lV )/g(x)(TU ;V ; lV ) = lαV + O(lα−2

V ) (|x| = 1).

An iteration of the last identity with respect to Tx;V = Tx;V (lV ) shows that

Tx;V =
2∑

n=1

enl
α−2n−1

α−1
V + O

(
l

α−7
α−1
V

)
(|x| = 1);

here e1 := κ2/(α−1) and e2 := κ4/(α−1)2(α − 1)−1. Substituting this in (6.17) and iterating the
latter with respect to BV , we obtain expressions (b) and (c) for BV with o(a−1

V ) accuracy.
The same is applied to derive (d). �

Remark 6.5 (Localization properties of extreme eigenvalues λK,V ) Assume that the condi-
tions of Theorem 6.3 are fulfilled and α � 3. As in Sect. 4, for arbitrarily fixed K ∈ N, we de-
fine the random variables τ(K) := τV (K) ∈ {1,2, . . . , |V |} by the equation λ(J)(zτ(K),V ) =
λ

(J)
K,V , i.e., zτ(K),V ∈ V is a location of the K th larger value λ

(J)
K,V of the sample λ(J)(· ) in

V (note that the inequalities λ
(J)

1,V > λ
(J)

2,V > · · · > λ
(J)
K,V are strict with probability one). By

combining (6.4) with Theorems 4.1 and 6.3, we obtain the following limits in probability
[8]:

1) if α = 3 then lim supV τV (K) < ∞;
2) if α > 3 then limV

log τV (K)

l
α(α−3)/(α−1)
V

= 2νAκ2α/(α−1).

Proof of Theorem 6.3 For α < 3, the assertion of the theorem follows from (6.5) and Theo-
rem 6.2.

Let α > 3. By the same arguments as in the proof of Lemma 5.3 combined with (6.4), it
suffices to show that

lim
V

P(λ
(J )

1,V � BV + a−1
V t) = exp{− e−t } for all t ∈ R, (6.18)

where λ
(J)

1,V denotes the maximum of the sample {λ(J)(z) : z ∈ V }. Until the proof of
Lemma 6.7, we abbreviate

λ∗ := λ
(J)

1,V and λ(J)(z∗) := λ∗,

i.e., z∗ ∈ V is a location of the eigenvalue λ∗. Recall that λ∗ is the maximal solution of the
equation G(z∗,J )

V (λ; z∗, z∗) = 1/ξ ∗(z∗), where ξ ∗(· ) is given at the beginning of this section
and G(z,J )

V (λ; · , · ) is Green’s function of the Hamiltonian

κ�V +
∑

y : 1�|y−z|�J

ξ̃ (y)δy in l2(V ).
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The following two lemmas summarize the key steps in the proof of (6.18).

Lemma 6.6 We have with probability 1 that

max
x∈V

ξ ∗(x)G(x,J )
V (λ∗;x, x) = 1 (6.19)

for all V ⊃ V0.

Proof Clearly G(x,J )
V (μ;x, x) is nonincreasing in μ for each x ∈ V ⊃ V0. Consequently

1 ≡ ξ ∗(x)G(x,J )
V

(
λ(J)(x);x, x

)
� ξ ∗(x)G(x,J )

V (λ∗;x, x)

for each x ∈ V ⊃ V0. On the other hand,

1 = ξ ∗(z∗)G(z∗,J )
V (λ∗; z∗, z∗) � max

x∈V
ξ ∗(x)G(x,J )

V (λ∗;x, x),

as claimed. Lemma 6.6 is proved. �

We rewrite (6.19) in the form

λ∗ = max
x∈V

ξ ∗(x)λ∗G(x,J )
V (λ∗;x, x). (6.20)

Let {DV } be an arbitrary (nonrandom) sequence of constants such that

DV = lV + O(l−1
V ). (6.21)

By ζ(x) we denote the expression under the maximum in (6.20) with λ∗ replaced by DV

(6.21), i.e.,

ζ(x) := ζ(x;DV ) := ξ ∗(x)DVG(x,J )
V (DV ;x, x) (x ∈ V ).

We are interested in the limit theorem for ζ1,V instead of λ
(J)

1,V . Let us introduce the following
system of equations (cf. (6.10) and (6.11)):

AQ(T̃U ;DV ; B̃) − log |V | + β log lV +
(

β − α

2

)∑

x∈U

log T̃x + C(α) = 0 (6.22)

and

Q(x)(T̃U ;DV ; B̃) = 0 for any x ∈ U. (6.23)

Obviously the solutions B̃ = B̃(DV ) and T̃x = T̃x(DV ) satisfy (6.12) and (6.13), respec-
tively.

Lemma 6.7 If B̃(DV ) is defined by (6.22) and (6.23), then

lim
V

P(ζ1,V � B̃(DV ) + a−1
V t) = exp{− e−t } for all t ∈ R.

Lemma 6.7 is proved below.
We now use Lemmas 6.6 and 6.7 to derive the asymptotic equations for BV appearing in

(6.18). We first note that we may replace λ∗ on the right of (6.20) by an initial approximation
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DV to obtain more explicit asymptotics for λ∗ on the left of (6.20). This enables us to apply
the following scheme of iterations:

Write B
(0)
V := lV , and for any n ∈ N, let B

(n)
V := B̃(B

(n−1)
V ) be a solution of the system of

equations (6.22) and (6.23) with B
(n−1)
V replacing DV . Now, since clearly λ∗ = B

(0)
V +O(l−1

V )

and maxx∈V ξ ∗(x) = lV + o(1) in probability, we may rewrite the right-hand side of (6.20)
in the form

λ∗ = max
x∈V

ζ(x;B(0)
V ) + O(l−3

V ) (6.24)

in probability. Applying Lemma 6.7 to the right-hand side of (6.24), we note that λ∗ =
B

(1)
V + O(a−1

V ) + O(l−3
V ) in probability. Substitute this into the right-hand side of (6.20) to

get that

λ∗ = max
x∈V

ζ(x;B(1)
V ) + o(a−1

V ) + O(l−5
V )

in probability, and so on. Having repeated this procedure J = [α/2] times, we obtain the
expression

λ∗ = max
x∈V

ζ(x;B(J−1)
V ) + o(a−1

V )

(which in turn is equal to B
(J)
V + O(a−1

V ) in probability). This and Lemma 6.7 imply
(6.18) with BV := B

(J)
V . Finally, substituting DV := B

(J−1)
V = B

(J)
V + O(l−2J+1

V ) into equa-
tions (6.22) and (6.23), by the straightforward calculations we obtain that BV satisfies equa-
tions (6.10) and (6.11) with o(a−1

V ) accuracy, as claimed.

Proof of Lemma 6.7 To this end, we abbreviate B̃V := B̃(DV ) and U ′ := {1 � |x| � J } ⊂ V .
Fix t ∈ R arbitrarily. We need to show that

|V |P(ζ(0) � B̃V + a−1
V t
)→ e−t

(cf. Lemma 5.3) or, equivalently, that

pV := |V |
∫

R|U ′ |

(

1 − F

(
B̃V + a−1

V t

DV g(sU ′ ;DV )

)) ∏

x∈U ′
p(sx)dsx → e−t (6.25)

as |V | → ∞, where the function g(·;DV ) is given by (6.6). We distinguish between three
cases: (i1) α − 2[α/2] > 1, (i2) α − 2[α/2] = 1 and (i3) α − 2[α/2] < 1.

(i1) Let α − 2[α/2] > 1. Then J = j , therefore, U ′ = U . Since DV g(·;DV ) = 1 + o(1)

uniformly in R
|U | (Remark 6.1), we have that

pV = ( e−t + o (1)
)|V |l−β

V

∫

R|U |
exp
{− AQ(sU ;DV ; B̃V )

}∏

x∈U

p̄(sx) dsx, (6.26)

where p̄(s) := p(s) exp{Asα+} (s ∈ R), and Q(·;DV ; B̃V ) is defined by (6.7). To estimate
the integral in (6.26), we introduce the rectangles

E := (−∞, lV ]|U | and Eρ := (−ρ,ρ)|U |

(0 < ρ < 1), and the following function

WV (tU ) := Q
({

(tx + 1)T̃x;V : x ∈ U
};DV ; B̃V

)
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− Q
({T̃x;V : x ∈ U};DV ; B̃V

)
, tU ∈ E. (6.27)

Now, making a change of integration variables sx := (tx + 1)T̃x;V (x ∈ U), we obtain that
the right-hand side of (6.26) is equal to

pV = ( e−t + o (1)
)|V |l−β

V exp
{− AQ(T̃U ;V ;DV ; B̃V )

}
(∏

x∈U

T̃x;V
)

IV + o (1), (6.28)

where

IV :=
∫

E

e−AWV (tU )
∏

x∈U

p̄
(
(tx + 1)T̃x;V

)
dtx . (6.29)

To estimate IV , we need some properties of WV (·).

Lemma 6.8 The function WV (·) is twice continuously differentiable in E1 and possesses
the following properties for any x ∈ U :

1) WV (0) = 0 for any V ;
2) W

(x)
V (0) = 0 for any V ;

3) W
(xx)
V (0) = α(α − 1)T̃ α

x;V (1 + o (1)) as |V | → ∞;

4) W
(xy)

V (·) = o((W
(xx)
V (0)W

(yy)

V (0))1/2) uniformly in E1 as |V | → ∞, for any y ∈ U \ {x};
5) |W(xx)

V (·) − W
(xx)
V (0)| � CρW

(xx)
V (0) in Eρ for any 0 < ρ < ρ0 and any V ⊃ V0(ρ),

where C > 0 does not depend on V and ρ, and moreover Cρ0 < 1;
6) WV (·) � l

const(ρ)

V in E \ Eρ for some const(ρ) > 0 and for any 0 < ρ < 1 and any V ⊃
V0(ρ).

Proof Properties 1 and 2 follow from (6.27) and (6.23), respectively.
In order to prove assertions 3–6, we need to estimate the derivatives of g(·;DV ) (6.8). Let

us expand g(xy)(sU ;DV ) over κ� as in the case of the first derivatives (see Remark 6.1). In
this expansion with |V | → ∞, the main asymptotic contribution comes from the summands

C(�xy)(DV − sx)
−1(DV − sy)

−1
∏

v∈V

(DV − sv)
−nv(�xy )

corresponding to the paths �xy with |�xy | = |x|+|y|+|x −y| visiting both the sites x and y;
here C(�xy) > 0. From this and Remark 6.1, it follows that uniformly in (0, (2/3)1/αlV )|U |

lV g(·;DV ) = 1 + o (1), g(x)(·;DV ) � l
−2|x|−2
V (6.30)

and

g(xy)(·;DV ) � l
−|x|−|y|−|x−y|−3
V (6.31)

as |V | → ∞ for any x ∈ U and any y ∈ U .
We now pass from g(sU ;DV ) through Q(sU ;DV ; B̃V ) (6.7) to WV (tU ) (6.27) with tx :=

−1 + sx/T̃x;V (x ∈ U). For x ∈ U and y ∈ U , we compute the derivatives W
(xy)

V (tU ) (tU ∈
E1) and then use (6.13), (6.30) and (6.31) to obtain properties 3–5.

Let us show assertion 6. Again by (6.13), (6.30) and (6.31), we obtain that the quadratic
form {W(xy)

V (·)}x∈U,y∈U is positively defined (therefore, WV (·) is a convex function) in the
rectangle×x∈U

[δ − 1, (2/3)1/αlV /T̃x;V − 1) ⊂ E, for any 0 < δ < 1 and any V ⊃ V0(δ).
Further, for x ∈ U chosen arbitrarily, let us consider the function W̃V (tx) := WV (tU ), tx <
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lV , with the remaining variables ty < lV (y ∈ U \ {x}) fixed arbitrarily. By a straightforward
calculation based on (6.13) and (6.30), we can find small δ > 0 independent of V and tU
such that W̃V (·) is decreasing in (−∞, δ − 1) and, therefore,

W̃V (·) � W̃V (δ − 1) in

(

−∞, δ − 1

]

∪
[(

2

3

)1/α
lV

T̃x;V
− 1, lV

)

;

V ⊃ V0(δ). Summarizing these properties of WV (·), we obtain that

WV (·) � inf
sU ∈∂Eρ

WV (sU ) in E \ Eρ (6.32)

(0 < ρ < 1; V ⊃ V0(ρ)); here ∂Eρ stands for the boundary of the cube Eρ ⊂ R
|U |. We

then expand the function under the infimum in powers of sx (x ∈ U) and use properties 1–5
to see that the right-hand side of (6.32) is bigger than constρ2 minx∈U T̃ α

x;V .This and (6.13)
imply assertion 6. Lemma 6.8 is proved. �

From Lemma 6.8 we see that the function WV (·) attains at 0 ∈ R
|U | its global minimum

of elliptic type; V ⊃ V0. We may, therefore, apply Laplace’s method to estimate IV (6.29).
Indeed, let us split IV = ∫

Eρ
+ ∫

E\Eρ
. By assertion 6 of Lemma 6.8 the second integral does

not exceed O (exp{−lconst
V }) as |V | → ∞ for each 0 < ρ < 1. As for the first integral, we ap-

ply Taylor’s formula to expand WV (tU ) (tU ∈ Eρ) in powers of tx (x ∈ U) up to the quadratic
form, and then use assertions 1–5 of Lemma 6.8. Thus, a straightforward calculation (recall
p̄(t) = Aαtα−β−1(1 + o(1))) shows that

IV = χ(V ;ρ)

(
2πAα

α − 1

)|U |/2∏

x∈U

T̃
α
2 −β−1

x;V + O
(
exp{−lconst

V }),

where χ(V ;ρ) → 1 letting first |V | → ∞ and afterwards ρ → 0. This and (6.28) combined
with (6.22) imply (6.25) for α − 2[α/2] > 1, as required.

(i2) Assume now that α − 2[α/2] = 1, or equivalently, α = 2n + 1 (n ∈ N). Then
J = j + 1, therefore, U ′ ⊃ U . Abbreviate U ′′ := U ′ \ U = {x : |x| = [α/2]}. We restrict
ourselves to the proof for α � 5 (the case α = 3 is similar). Split pV = pV,M + qV,M ,
where pV,M (resp., qV,M ) stands for the left-hand side of (6.25) with the integration do-
main E(M) := {sU ′ : sU ∈ R

|U |, sU ′′ ∈ (−M,M)|U ′′ |} (resp., R
|U ′| \ E(M)) instead of R

|U ′|;
here M > 0.

We first consider pV,M . For arbitrarily fixed sU ∈ R
|U |, let us expand the function

g(sU ′ ;DV )−α (sU ′′ ∈ (−M,M)|U ′′ |) in powers of sy (y ∈ U ′′). Therefore, by (6.30) and
(6.31) (see also Remark 6.1) we have that, as |V | → ∞,

g(sU ′ ;DV )−α

= g(sU ;DV )−α − αg(sU ;DV )−α−1
∑

y∈U ′′
sy

(
g(sU ′ ;DV )

)(y)

∣
∣
∣
∣
sU ′′ =0

+ o(1) (6.33)

uniformly in E(M) for arbitrarily fixed M > 0. In addition,

g(sU ;DV )−α−1
(
g(sU ′ ;DV )

)(y)

∣
∣
∣
∣
sU ′′ =0

= κα−1cy + o (1) (6.34)
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uniformly in sU ∈ (0,o (lV ))|U | for each y ∈ U ′′. Following the same lines of the proof in
part (i1) combined with (6.33) and (6.34), we obtain that

pV,M = ( e−t + o (1)
) ∏

y∈U ′′
E
(
exp
{
Aακα−1cyξ(0)

}
1
{|ξ(0)| < M

})

× l
−β

V |V |
∫

(0,εlV )|U |
exp{−AQ(sU ;DV ; B̃V )}

∏

x∈U

p̄(sx) dsx + o (1)

= e−t + o (1)

(ε > 0) passing to the limits first |V | → ∞ and then M → ∞. Similarly, noting that

g(sU ′ ;DV )−α � g(sU ;DV )−α − const
∑

y∈U ′′
(sy)+

for each sU ′ ∈ R
|U ′| and each V ⊃ V0, we obtain that

qV,M � const′
(
E
(
exp{const ξ(0)}1{ξ(0) � M

})+ P
(
ξ(0) � −M

))

× l
−β

V |V |
∫

R|U |
exp
{−AQ(sU ;DV ; B̃V )

}∏

x∈U

p̄(sx) dsx → 0,

passing to the limits first |V | → ∞ and then M → ∞. This concludes the proof of (6.25)
for α − 2[α/2] = 1.

(i3) Assume that α − 2[α/2] < 1. Then J = j + 1, therefore, U ′ ⊃ U . Abbreviate
U ′′ := U ′ \ U = {x : |x| = [α/2]}. For fixed xU ∈ R

|U |, we again expand g(sU ′ ;DV )−α

(sU ′′ ∈ (−M,M)|U ′′ |) in powers of sy (y ∈ U ′′). Therefore, we have that, as |V | → ∞,

g(sU ′ ;DV )−α = g(sU ;DV )−α + o (1) (6.35)

uniformly in E(M) := R
|U | × (−M,M)|U ′′ | for fixed M > 0. The proof of (6.25) repeats from

line to line that in part (i2), where instead of (6.33) and (6.34) we use (6.35) and where all
the factors cy (y ∈ U ′′) must be replaced by zero.

Lemma 6.7 is proved. �

Appendix A: The Path Expansion for Resolvents

Let V ⊆ Z
ν denote either the ν-dimensional torus or the whole lattice Z

ν . Fix some subset
� ⊂ V , 0 < |�| < ∞. Given a realization {ξ(x) : x ∈ V }, let G(λ;x, y), G̃(λ;x, y) and
G̃(u)(λ;x, y) (x ∈ V,y ∈ V ) denote Green’s functions of the Hamiltonians H := κ� + ξ(·),
H̃ := κ�+∑x∈V \� ξ(x)δx and H̃(u) := H̃+ ξ(u)δu in l2(V ), respectively; u ∈ �. Here and
in the sequel, we suppress V from all the notation.

Lemma A.1 (Cluster expansion) For all x ∈ V and all y ∈ V ,

G(λ;x, y) = G̃(λ;x, y)

+
∑

k∈N

∑

γ :u1→u2→...→uk

G̃(u1)(λ;x,u1)ξ(u1)

( k∏

l=2

G̃(ul )(λ;ul−1, ul)ξ(ul)

)

G̃(λ;uk, y),

(A.1)
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provided the series converges. Here the second sum
∑

γ is taken over all paths

γ : u1 → u2 → . . . → uk in �

such that ui−1 �= ui for each 2 � i � k, having the length |γ | = k − 1;
∏1

l=2 . . . := 1.

Proof Formula (A.1) has been announced by Golitsyna and Molchanov [26]. We show (A.1)
for a completeness of our paper only.

The proof is by induction in K ∈ N. Let us represent G(λ; ·, y) := G(λ)δy in the form

G(λ)δy = G̃(λ)δy + e1. (A.2)

Then, applying the operator λ − H = λ − H̃ −∑u∈� ξ(u)δu to both the sides of (A.2), we
obtain the equation for e1 := e1(·)

(λ −H)e1 =
∑

u∈�

δuξ(u)G̃(λ;u,y).

For any k ∈ N, let us write

ẽk(u1) :=

⎧
⎪⎪⎨

⎪⎪⎩

∑

γ :u2→...→uk
u2 �=u1

( k∏

l=2

G̃(ul )(λ;ul−1, ul)ξ(ul)

)

G̃(λ;uk, y) if k � 2,

G̃(λ;u1, y) if k = 1

(A.3)

for all u1 ∈ �. Fix now K ∈ N\{1} and assume that the following identity

G(λ)δy = G̃(λ)δy +
K−1∑

k=1

∑

u∈�

G̃(u)(λ)δuξ(u)̃ek(u) + eK (A.4)

holds with eK := eK(·) satisfying the equation

(λ −H)eK =
∑

u∈�

δuξ(u)̃eK(u). (A.5)

Let us show (A.4) and (A.5) with K + 1 replacing K . Put eK in the form

eK =
∑

u∈�

eK,u + eK+1, (A.6)

where eK,u = eK,u(·) satisfies the equation

(λ − H̃(u))eK,u = δuξ(u)̃eK(u). (A.7)

Thus, eK,u can be written in the form

eK,u(·) = G̃(u)(λ; ·, u)ξ(u)̃eK(u) (A.8)

for any u ∈ �. We now apply the operator λ −H = λ − H̃(u) −∑v∈�\{u} δvξ(v) (u ∈ �) to
both the sides of (A.6). Then

(λ −H)eK =
∑

u∈�

(λ −H)eK,u + (λ −H)eK+1
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=
∑

u∈�

(λ − H̃(u))eK,u −
∑

u∈�

∑

v∈�\{u}
δvξ(v)eK,u(v) + (λ −H)eK+1

=
∑

u∈�

δuξ(u)̃eK(u) −
∑

u∈�

∑

v∈�\{u}
δuξ(u)eK,v(u) + (λ −H)eK+1

by (A.7). Combining this with (A.5) and (A.8) and noting that (by the definition of ẽk in
(A.3)) ẽK+1(u) =∑v∈�\{u} G̃(v)(λ;u,v)ξ(v)̃eK(v) for any u ∈ �, we obtain the equation
for eK+1 := eK+1(·)

(λ −H)eK+1 =
∑

u∈�

δuξ(u)̃eK+1(u). (A.9)

Finally, summarizing (A.8), (A.6) and (A.4), we get that

G(λ)δy = G̃(λ)δy +
K∑

k=1

∑

u∈�

G̃(u)(λ)δuξ(u)̃ek(u) + eK+1,

where eK+1 := eK+1(·) satisfies equation (A.9). These inductional arguments prove (A.4)
and (A.5) for any K ∈ N. �

The following result is well known (see, e.g., Appendix A in [18] or p. 302 in [38]).

Lemma A.2 (Expansion over κ�) For any x ∈ V and any y ∈ V ,

G(λ;x, y) =
∑

�(x,y)

κ |�(x,y)|∏

v∈V

(λ − ξ(v))−nv(�(x,y)), (A.10)

provided the series converges. Here the sum
∑

�(x,y) is taken over all paths

� : v0 := x → v1 → . . . → vm := y in V

such that |vi − vi−1| = 1 for each 1 � i � m and each m ∈ N (i.e., the nearest neighbor
paths in V starting at x and ending at y); nv(�(x, y)) denotes the number of times the path
�(x, y) visits the site v ∈ V ; |�(x, y)| :=∑v∈V nv(�(x, y))−1 � |x −y| (note that if y = x

and |�(x, x)| = 0, then the corresponding summand in (A.10) is equal to (λ − ξ(x))−1).

The proof of (A.10) is trivial. Indeed, since, for fixed y ∈ V , the function G(λ; ·, y) sat-
isfies the equation

λG(λ; ·, y) − κ�G(λ; ·, y) − ξ(·)G(λ; ·, y) = δy(·),
result (A.10) is done by applying the following iteration formula

G(λ;x, y) = κ
∑

|x′−x|=1 G(λ;x ′, y)

λ − ξ(x)
+ δy(x)

λ − ξ(x)
, x ∈ V.

Appendix B: Upper Part of Spectrum in Deterministic Rare Scatterers Model

B.1 Spectral Problem

We again consider the Hamiltonian H = κ� + ξ(·) in l2(V ), where V ⊆ Z
ν denotes either

the ν-dimensional (finite) torus or the whole lattice Z
ν . In this subsection, we reduce the
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spectral problem

Hψ(·) = λψ(·); ψ(·) ∈ l2(V ), λ ∈ R, (B.1)

to a certain dispersion equation for an eigenvalue λ, provided λ satisfies appropriate condi-
tions depending upon the structure of potential ξ(·) in V (Theorem B.1).

Let us introduce some abbreviations we use throughout Sect. B. (To this end, we suppress
V from all the notation.) Fix a constant 0 < L < ∞, and define the subset � ⊂ V by

� := {x ∈ V : ξ(x) � L}. (B.2)

We throughout assume that

0 < |�| < ∞.

Write

ξ̃ (x) :=
{

ξ(x) if x ∈ V \�,

0 otherwise.
(B.3)

Let G(z)(λ;x, y), G̃(λ;x, y) and G̃(z)(λ;x, y) (x ∈ V,y ∈ V ) be Green’s functions of the
Hamiltonians H(z) := κ� + (1 − δz)ξ(·), H̃ := κ� + ξ̃ (·) and H̃(z) := H̃ + ξ(z)δz in l2(V ),
respectively; z ∈ �. Fix constant λ0 > L + 2νκ . For any λ � λ0, we write

A(λ) := log
λ − L

2νκ
(B.4)

and

B(λ;u) := b(λ)λ−2

∣
∣
∣
∣

1

ξ(u)
− G̃(λ;u,u)

∣
∣
∣
∣

−1

, where b(λ) := (λ − L)2

λ − L − 2νκ
.

Abbreviate

r := min
{|x − y| : x ∈ �,y ∈ �,x �= y

}
if |�| � 2, (B.5)

and r := |V |1/ν if |�| = 1, by convention.
For z ∈ �, let us introduce the following (close) subsets �(z) ⊂ [λ0,∞):

�(z) := �(z;λ0; δ; ξ(·))

:=
{

λ � λ0 : max
u∈�\{z}

B(λ;u) � 1

2|�| eδA(λ)r

}

if |�| � 2, (B.6)

and �(z) := [λ0,∞) if |�| = 1, by convention; here 0 < δ < 1.

Theorem B.1 Fix z ∈ � and 0 < δ < 1. Then the following assertions hold.

(i) Spect(H(z)) ∩ �(z) = ∅.
(ii) If λ belongs to �(z), then λ is an eigenvalue of H if and only if λ satisfies the equation

G(z)(λ; z, z) = 1

ξ(z)
. (B.7)
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In this case, the corresponding (normalized) eigenfunction has the form

ψ(·;λ) = G(z)(λ; ·, z)
(∑

y∈V

(
G(z)(λ;y, z)

)2
)−1/2

. (B.8)

(iii) For any λ ∈ �(z),

∣
∣G(z)(λ;x, z)

∣
∣� 2b(λ)

λ(λ − L)
e−(1−δ)A(λ)|x−z| for all x ∈ V, (B.9)

and
∣
∣G(z)(λ; z, z) − G̃(λ; z, z)∣∣� b(λ)

λ2
e−(2−δ)A(λ)r . (B.10)

Let us first explain the main idea of the proof of Theorem B.1. We focus on the cluster
expansion formula (A.1) with � defined by (B.2) and with G(λ) replaced by G(z)(λ). Since,
for each λ ∈ �(z), Green’s functions G̃(λ; ·, ·) and G̃(u)(λ; ·, ·) of the Hamiltonians H̃ and
H̃(u) (u ∈ �\{z}) are shown to decay exponentially fast, one finds that the series (A.1)
converges. Consequently, �(z) is contained in the resolvent set of the Hamiltonian H(z).
This in turn enables us to reduce the spectral problem (B.1) to the dispersion equation (B.7)
for eigenvalues in �(z).

Proof of Theorem B.1 We shall treat the case where |�| � 3. For |�| = 1, the proof is trivial.
For |�| = 2, the proof is similar (and even simpler) as in the case |�| � 3.

In the sequel, we need the following estimates for the functions G̃(λ; ·, u) and G̃(u)(λ; ·, u)

with u ∈ �.

Lemma B.2 Fix u ∈ �, v ∈ �\{u} and λ > L + 2νκ such that ξ(u)G̃(λ;u,u) �= 1. Then,
for all x ∈ V ,

∣
∣G̃(λ;x,u)

∣
∣� b(λ)

λ(λ − L)
e−A(λ)|x−u|, (B.11)

∣
∣G̃(λ;v,u)

∣
∣� b(λ)

λ2
e−A(λ)|v−u|, (B.12)

∣
∣G̃(u)(λ;x,u)

∣
∣� λB(λ;u)

(λ − L)ξ(u)
e−A(λ)|x−u|, (B.13)

and
∣
∣G̃(u)(λ;v,u)

∣
∣� B(λ;u)

ξ(u)
e−A(λ)|v−u|. (B.14)

Proof According to Lemma A.1 with {u} instead of � and with G̃(u)(λ) instead of G(λ), we
obtain the following resolvent identity

G̃(u)(λ;x,u) = G̃(λ;x,u) + G̃(u)(λ;x,u)ξ(u)G̃(λ;u,u).

Then

G̃(u)(λ;x,u) = G̃(λ;x,u)
/(

1 − ξ(u)G̃(λ;u,u)
)
.
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We now apply Lemma A.2 to expand G̃(λ;x,u) over κ�. Using this expansion combined
with the fact that the total number of paths �(x,u) of the length k does not exceed (2ν)k−1,
it is easy to obtain the claimed estimates. �

We now turn to the proof of Theorem B.1.
(i) For fixed y ∈ V and λ ∈ �(z), let us consider the equation

(λ −H(z))ϕ(·) =
∑

u∈�\{z}
δu(·)ξ(u)G̃(λ;u,y). (B.15)

Having written λ − H(z) = λ − H̃ − ∑u∈�\{z} ξ(u)δu, we apply the operator G̃(λ) :=
(λ − H̃)−1 to both the sides of (B.15) to represent (B.15) in the following form

ϕ(·) −
∑

u∈�\{z}
G̃(λ; ·, u)ξ(u)ϕ(u) =

∑

u∈�\{z}
G̃(λ; ·, u)ξ(u)G̃(λ;u,y). (B.16)

According to Gerzhgorin’s theorem (e.g., Theorem 7.2.1 in [32]), equation (B.16) has an
unique solution ϕ(·), provided that

∣
∣
∣
∣G̃(λ;u,u) − 1

ξ(u)

∣
∣
∣
∣>

∑

v∈�\{z,u}
G̃(λ;v,u) for any u ∈ �\{z}. (B.17)

On the other hand, it is easy to show (B.17) by applying (B.12) to the right-hand side of
(B.17) combined with the definition of λ ∈ �(z).

We now put

w(·) := G̃(λ; ·, y) + ϕ(·), (B.18)

where ϕ(·) is the solution of equation (B.15). We then apply the Hamiltonian λ−H(z) to both
the sides of (B.18) to get the identity w(·) ≡ G(z)(λ; ·, y). Since y ∈ V is chosen arbitrarily,
this implies that λ does not belong to Spect(H(z)). Part (i) is proved.

Part (ii) follows from (i) by considering H(z) as a “basic” operator in the representa-
tion H = H(z) + ξ(z)δz [27]. Indeed, let (B.1) be fulfilled for some λ ∈ �(z) and for some
ψ(·) �≡ 0. Rewrite (B.1) in the form (λ −H(z))ψ(·) = ξ(z)ψ(z)δz(·), and then apply the re-
solvent operator G(z)(λ) := (λ−H(z))−1. (Recall that ξ(z) > 0 by the assumption.) It is easy
to see that λ satisfies (B.7), and the corresponding (normalized) eigenfunction is given by
(B.8). The converse follows by the same calculations.

(iii) We first note that part (i) implies
∣
∣G(z)(λ;x, y)

∣
∣ < ∞ and that (B.13) yields∣

∣G̃(u)(λ;x,u)
∣
∣< ∞ for any λ ∈ �(z), any u ∈ �\{z} and all x ∈ V , y ∈ V . We may there-

fore apply the cluster expansion for resolvents like in (A.1), where G(λ; ·, ·) is replaced by
G(z)(λ; ·, ·) and � is replaced by �\{z}. Thus, for each λ ∈ �(z), each x ∈ V and each
y ∈ V ,

G(z)(λ;x, y) = G̃(λ;x, y) +
K−1∑

k=1

∑

γ :u1→u2→...→uk

G̃(u1)(λ;x,u1)ξ(u1)

×
(

k∏

l=2

G̃(ul )(λ;ul−1, ul)ξ(ul)

)

G̃(λ;uk, y) + ρλ,K(x, y), (B.19)
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where

ρλ,K(x, y) :=
∑

γ :u1→u2→...→uK

G(z)(λ;x,u1)ξ(u1)

×
(

K∏

l=2

G̃(ul )(λ;ul−1, ul)ξ(ul)

)

G̃(λ;uK,y).

First, by (B.11), (B.14) and (B.6) we have that

∣
∣ρλ,K(x, y)

∣
∣� const(λ; ξ(·))( e−A(λ)r max

u∈�\{z}
B(λ;u)

)K−1|�|K

� const′(λ; ξ(·))
(

1

2

)K−1

→ 0 as K → ∞, (B.20)

where const > 0 and const′ > 0 do not depend on K . We now apply (B.11)–(B.14) to esti-
mate the kth summands in (B.19). Namely, from (B.19) with y = z and K → ∞ we have
that

∣
∣G(z)(λ;x, z) − G̃(λ;x, z)

∣
∣

� b(λ)

λ(λ − L)

∑

k∈N

∑

γ :u1→u2→...→uk

B(λ;u1) e−A(λ)|x−u1|

×
( k∏

l=2

B(λ;ul) e−A(λ)|ul−1−ul |
)

e−A(λ)|uk−z|

� b(λ)

λ(λ − L)
e−(1−δ)A(λ)|x−z|∑

k∈N

(|�| max
u∈�\{z}

B(λ;u) e−δA(λ)r
)k

� b(λ)

λ(λ − L)
e−(1−δ)A(λ)|x−z| (B.21)

by using the definition of λ ∈ �(z) as in (B.6). This combined with (B.11) gives (B.9).
Proceeding as in (B.20) and (B.21), we also obtain (B.10). Theorem B.1 is proved. �

B.2 Exact Estimates for Extreme Eigenvalues and Eigenfunctions

We now are in a position to study the structure of the boundary part of Spect(H), pro-
vided the potential satisfies conditions like those in (2.5)–(2.8) (see Theorem B.3 below).
As before, the Hamiltonian H = κ� + ξ(·) acts on l2(V ), where V ⊆ Z

ν is either the
ν-dimensional (finite) torus or the whole lattice Z

ν .
Let us introduce the following notation. As in Sect. B.1, let � ⊂ V stand for the subset of

ξV -exceedances of the level 0 < L < ∞ defined by (B.2) and ξ̃ (·) for the “noise” potential
defined by (B.3). For any u ∈ �, by λ̃(u) we abbreviate the principal eigenvalue of the
“single peak” Hamiltonian H̃(u) := κ� + ξ̃ (·) + ξ(u)δu in l2(V ). Given 0 < h < ∞, we
introduce the subset

�̃ := {u ∈ � : λ̃(u) � L + 2νκ + h}.
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If �̃ �= ∅, let

λ̃1 � λ̃2 � · · · � λ̃|�̃| (B.22)

be the variational series of the sample {̃λ(x) : x ∈ �̃}, and write λ̃|�̃|+1 := L + 2νκ + h. Let
A(λ) be given by (B.4), i.e. A(λ) := log λ−L

2νκ
for each λ � L + 2νκ + h. By a ∈ R+ and

c ∈ R+ we abbreviate the following expressions:

a := a(h) := log
2νκ + h

2νκ
(B.23)

and

c := c(h) := (2νκ + h)/h. (B.24)

In the trivial case where �̃ = � = {̃z} (i.e., ξ(·) is a “single peak” potential), we have
that the principal eigenvalue λ1 of the Hamiltonian H coincides with λ̃1 and

∣
∣ψ(x;λ1)

∣
∣� c(h) exp

{− A(̃λ1)|x − z̃|} (x ∈ V )

according to Theorem B.1 and (B.11).
In the case of |�̃| � 2 or |�| � 2, for K ∈ N and 0 < δ < 1 we introduce the following

conditions on the sample {ξ(x) : x ∈ V }:
|�̃| � K, (B.25)

min
u∈V \�̃

(
λ̃K+1 − ξ(u)

)
� 2νκ2/h, (B.26)

16c(h)2
∑

x∈V \{0}
exp
{− 2(1 − δ)A(̃λK+1)|x|}< 1, (B.27)

min
1�l�K

(̃λl − λ̃l+1) � e−δa(h)r/2 (B.28)

and, finally,

r � r0(κ, ν)

δ(h2 ∧ 1)
log |�|; (B.29)

here, remember, r stands for the minimum distance between sites in � defined by (B.5);
r0(κ, ν) > 0 denotes a large constant which depends on κ and ν (not on V,h, etc.) and
which is actually specified in the proof of Theorem B.3 below.

We now associate the sites z̃k ∈ � with the variational series (B.22) by λ̃(̃zk) := λ̃k

(1 � k � K). Recall also that λk and ψ(·;λk) denote, respectively, the kth eigenvalue and
the corresponding (normalized) eigenfunction of the Hamiltonian H.

Theorem B.3 Fix V and constants 0 < L < ∞, 1 � K < |V |, 0 < h < ∞ and 0 < δ < 1/2
which all may depend on V . Assume that {ξ(x) : x ∈ V } satisfies (B.25)–(B.29). Then we
have that, for any 1 � l � K ,

|λl − λ̃l| � exp
{− 2(1 − δ)A(̃λl)r

}
(B.30)

and
∣
∣ψ(x;λl)

∣
∣� 4c(h) exp

{− (1 − δ)A(λl)|x − z̃l |
}

(x ∈ V ), (B.31)

where c(h) is given by (B.24).
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Remark B.4 (i) Assumptions (B.28) and (B.29) are to avoid the interaction among single
high peaks of ξ(·) in the model. Assumptions (B.26) and (B.27) guarantee that the inter-
action between a single high peak and a multiple (double, triple, etc.) one is negligible.
According to Theorem B.3, the analysis of Spect(H) ∩ (L + 2νκ + h,∞) is reduced to the
study of the principal eigenvalues of the separate “single peak” Hamiltonians H̃(z)(z ∈ �̃).

(ii) In fact, we shall show that each eigenvalue λ(z) of H, which is situated in the neigh-
borhood of λ̃(z), satisfies dispersion equation (B.7) and the corresponding eigenfunction
is given by (B.8). Therefore, using the cluster expansion formulas for Green’s function
G(z)(λ; ·, ·) (see Theorem B.1(iii) and its proof), we obtain the explicit estimates for the
eigenpairs λ(z), ψ(·;λ(z)), provided that λ(z) � L + 2νκ + h.

Remark B.5 For u ∈ �̃ chosen arbitrarily, λ̃(u) is the principal eigenvalue of H̃(u) if and
only if λ̃(u) is the maximal solution of the equation

G̃(λ;u,u) = 1/ξ(u) (B.32)

(Theorem B.1(ii)). Moreover,

min
μ∈Spect(H̃(u))

μ �=λ̃(u)

(
λ̃(u) − μ

)
� h.

Proof of Theorem B.3 We treat the case K � 2. For K = 1, the proof is similar.
For a brevity of notation, we write �K := {̃zk : 1 � k � K}. By q we denote the right-

hand side of (B.28), i.e.,

q := e−δar/2. (B.33)

We introduce the following intervals

I (u) := [λ̃(u) − q/3, λ̃(u) + q/3
]

(u ∈ �K)

and

I := [λ0,∞) where λ0 := λ̃K − q/3. (B.34)

Thus, by (B.28) and (B.33) we have that

I (u) ⊂ I and I (u) ∩ I (v) = ∅ (u ∈ �K,v ∈ �K\{u}). (B.35)

Also, by the definition,

λ̃(u) > λ0 > λ̃K+1 � L + 2νκ + h (u ∈ �K). (B.36)

For each z ∈ �K , let the subset �(z) := �(z;λ0; δ; ξ(·)) ⊂ I be defined by (B.6) with λ0

as in (B.34). Also, by q̃(z) we denote the right-hand side of (B.30) with λ̃(z) instead of λ̃l ,
viz.

q̃(z) := exp
{− 2(1 − δ)A(̃λ(z))r

}
(z ∈ �K). (B.37)

Lemma B.6 Under the conditions of Theorem B.3 we have the following assertions.

(j) I (z) ⊂ �(z) for any z ∈ �K .
(jj) I\⋃z∈�K I (z) ⊂⋂z∈�K �(z).
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(jjj) If z ∈ �K and if λ ∈ �(z) satisfies equation (B.7), then

∣
∣λ − λ̃(z)

∣
∣� q̃(z) (B.38)

and, consequently, λ ∈ I (z).

Proof (j)–(jj) Fix z ∈ �K , and rewrite �(z) (B.6) as follows:

�(z) =
⋂

u∈�\{z}
�u,

where

�u :=
{

λ � λ0 :
∣
∣
∣
∣

1

ξ(u)
− G̃(λ;u,u)

∣
∣
∣
∣λ

2 � 2b(λ)|�| e−δA(λ)r

}

. (B.39)

For each λ � λ0 we have that

2b(λ)|�| e−δA(λ)r = 4νκ(λ − L)

λ − L − 2νκ
|�| e−A(λ)(δr−1) � q

6
(B.40)

by (B.36) and (B.29). On the other hand, using the properties of λ̃(u) (u ∈ �̃) (see Re-
mark B.5), we obtain that, for any λ � λ0 and any u ∈ �̃,

∣
∣
∣
∣

1

ξ(u)
− G̃(λ;u,u)

∣
∣
∣
∣λ

2 = ∣∣G̃(̃λ(u);u,u) − G̃(λ;u,u)
∣
∣λ2

� |λ − λ̃(u)|λ
λ̃(u)

�

⎧
⎪⎨

⎪⎩

1
2 |λ − λ̃(u)| if λ � 1

2 λ̃(u),

1
2λ if λ < 1

2 λ̃(u).
(B.41)

Estimates (B.40) and (B.41) imply that

�u ⊃ {λ � λ0 : |λ − λ̃(u)| � q/3
}

(u ∈ �̃). (B.42)

Let us consider �u (B.39) for u ∈ �\�̃. Since λ0 > L + 2νκ + h, we first have that, for
any λ � λ0,

G̃(λ;u,u) � 1/λ + σ/λ2, (B.43)

where

σ := κ
∑

k∈N

exp
{−(2k − 1)A(L + 2νκ + h)

}

= 2νκ2(2νκ + h)

(4νκ + h)h
� 2νκ2

h
− q (B.44)

because of assumption (B.29). Further, since λ0 � ξ(u), we obtain that, for any λ � λ0,

G̃(λ;u,u)λ2/ξ(u) � 1
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and by (B.43)

1

G̃(λ;u,u)
− ξ(u) � λ2

λ + σ
− ξ(u) � λ − σ − ξ(u) � λ̃K+1 − σ − ξ(u) � q

by combining (B.44) and assumption (B.26). These estimates imply that
(

1

ξ(u)
− G̃(λ;u,u)

)

λ2 � q (λ � λ0). (B.45)

Now, (B.40) and (B.45) yield that �u ⊃ [λ0,∞), where u ∈ �\�̃ is chosen arbitrarily. This
and (B.42) immediately imply assertions (j) and (jj).

(jjj) Let us show (B.38) by assuming that λ belongs to �(z) and satisfies equation (B.7).
From (B.7) and the properties of λ̃(z) (see Remark B.5) we get that

∣
∣G(z)(λ; z, z) − G̃(λ; z, z)∣∣

= ∣∣G̃ (̃λ(z); z, z) − G̃(λ; z, z)∣∣

� |λ − λ̃(z)|
λ̃λ(z)

�

⎧
⎪⎨

⎪⎩

1
2 |̃λ(z) − λ|λ−2 if λ � 1

2 λ̃(z),

1
2λ−1 if λ < 1

2 λ̃(z).
(B.46)

On the other hand, since λ ∈ �(z), from (B.10) we have that the left-hand side of (B.46)
does not exceed

b(λ)λ−2 exp
{−(2 − δ)A(λ)r

}
� 1

2λ2
exp

{

−
(

2 − 3δ

2

)

A(λ)r

}

by (B.29). These estimates yield that

∣
∣̃λ(z) − λ

∣
∣� exp

{

−
(

2 − 3δ

2

)

A(λ)r

}

(0 < δ < 1/2) which in turn implies λ̃(z) − λ � e−ar , where a is given by (B.23). Conse-
quently, |̃λ(z) − λ| � q̃(z)q1q2, where q̃(z) is given by (B.37) and

q1 :=
(

λ̃(z) − L − e−ar

λ̃(z) − L

)−2(1−δ)r

, and q2 := exp{−δA(λ)r/2}.

We need to estimate q1q2. In view of (B.29), we have that

q1 � (1 − exp{−ar/2})−2r = [(1 − exp{−ar/2})−ar/2
]4/a � e4/a

according to the inequality (1 − e−t )−t � e for all t � 1. Thus, by (B.29) we have that
q1q2 < 1 and, therefore, (B.38) follows. Lemma B.6 is proved. �

We now finish the proof of Theorem B.3 by using Lemma B.6 and Theorem B.1.
Fix λ ∈ I\⋃z∈�K I (z). According to Lemma B.6(jj), λ belongs to �(z) for any z ∈ �K .

Therefore, Lemma B.6(jjj) and Theorem B.1(ii) imply that λ cannot be an eigenvalue of H.
For fixed z ∈ �K , we now consider the function G(z)(λ; z, z) (λ ∈ I (z) ⊂ �(z)). In

view of (B.29), estimates (B.10) and (B.36) imply that G(z)(λ; z, z) is bounded from above
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by g1(λ) := G̃(λ; z, z) + q

6 λ−2 and from below by g2(λ) := G̃(λ; z, z) − q

6 λ−2. Expanding
G̃(λ; z, z) in powers of λ − λ̃(z) and noting that λ̃(z) satisfies equation (B.32) with u = z,
we find that there exists in I (z) a solution of the equation gi(λ) = 1/ξ(z) for each i = 1
and 2. Consequently, because of the continuity of the function G(z)(· ; z, z) in I (z) (see The-
orem B.1(i)), there exists in I (z) a solution of the equation G(z)(λ; z, z) = 1/ξ(z) which
we denote by λ(z). Now, from Theorem B.1(ii) and Lemma B.6(jjj) we note that λ(z) is
an eigenvalue of H such that |λ(z) − λ̃(z)| � q̃(z). I.e., (B.30) is proved. Moreover, the
eigenfunction corresponding to λ(z) can be estimated as follows:

|ψ(x;λ(z))| � |G(z)(λ(z);x, z)|/G(z)(λ(z); z, z)
� 2cξ(z)λ(z)−1 exp{−(1 − δ)A(λ(z))|x − z|} (x ∈ V )

by (B.7) and (B.9). Here

λ(z) � λ̃(z) − q̃(z) � λ̃(z)/2 � ξ(z)/2, (B.47)

where the second inequality follows from (B.29). These estimates imply (B.31).
It only remains to show the uniqueness of the eigenvalue λ(z) in I (z). Let λ′ belong to

I (z) and satisfy (B.7). According to the resolvent identity, we may therefore write

0 = G(z)(λ(z); z, z) − G(z)(λ′; z, z)
= (λ′ − λ(z))

∑

x∈V

G(z)(λ′;x, z)G(z)(λ(z);x, z). (B.48)

All together, (B.7), (B.9), (B.36) and (B.47), imply that the sum on the right of (B.48) is
bigger than

1

ξ(z)2
− 16c2

ξ(z)2

∑

x �=0

exp
{−2(1 − δ)A(̃λK+1)|x|}> 0

by assumption (B.27). In view of (B.35), this implies that λ′ = λ(z). Theorem B.3 is
proved. �
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